Toward macroscopic applications of graphene, it is desirable to preserve the superior properties of single-layer graphene in bulk scale. However, the AB-stacking structure is thermodynamically favored for multilayer graphene and causes strong interlayer interactions, resulting in property degradation. A promising approach to prevent the strong interlayer interaction is the staking order reduction of graphene, where the graphene layers are rotated in-plane to form a randomly stacking structure. In this study, we propose a strategy to effectively decrease the stacking order of multilayer graphene by incorporating nanospacers, cellulose nanofibers, or nano-diamonds (NDs) in the formation process of porous graphene sponges. We conducted an ultrahigh temperature treatment at 1500 °C with ethanol vapor for the reduction and structural repair of graphene oxide sponges with different concentrations of the nanospacers. Raman spectroscopy indicated an obvious increase in the random-stacking fraction of graphene by adding the nanospacers. The x-ray diffraction (XRD) analysis revealed that a small amount of the nanospacers induced a remarkable decrease in ordered graphene crystalline size in the stacking direction. It was also confirmed that a layer-number increase during the thermal treatment was suppressed by the nanospacers. The increase in the random-stacking fraction is attributed to the efficient formation of randomly rotated graphene through the ethanol-mediated structural restoration of relatively thin layers induced by the nanospacers. This stacking-order-reduced graphene with bulk scale is expected to be used in macroscopic applications, such as electrode materials and wearable devices.

1.
A.
Ambrosi
,
C. K.
Chua
,
N. M.
Latiff
,
A. H.
Loo
,
C. H. A.
Wong
,
A. Y. S.
Eng
,
A.
Bonanni
, and
M.
Pumera
,
Chem. Soc. Rev.
45
,
2458
2493
(
2016
).
2.
R. R.
Nair
,
P.
Blake
,
A. N.
Grigorenko
,
K. S.
Novoselov
,
T. J.
Booth
,
T.
Stauber
,
N. M. R.
Peres
, and
A. K.
Geim
,
Science
320
,
1308
(
2008
).
3.
A. A.
Balandin
,
S.
Ghosh
,
W.
Bao
,
I.
Calizo
,
D.
Teweldebrhan
,
F.
Miao
, and
C. N.
Lau
,
Nano Lett.
8
,
902
907
(
2008
).
4.
C.
Lee
,
X.
Wei
,
J. W.
Kysar
, and
J.
Hone
,
Science
321
,
385
388
(
2008
).
5.
D. X.
Luong
,
K. V.
Bets
,
W. A.
Algozeeb
,
M. G.
Stanford
,
C.
Kittrell
,
W.
Chen
,
R. V.
Salvatierra
,
M.
Ren
,
E. A.
McHugh
,
P. A.
Advincula
,
Z.
Wang
,
M.
Bhatt
,
H.
Guo
,
V.
Mancevski
,
R.
Shahsavari
,
B. I.
Yakobson
, and
J. M.
Tour
,
Nature
577
,
647
651
(
2020
).
6.
Y.
Zhang
,
L.
Zhang
, and
C.
Zhou
,
Acc. Chem. Res.
46
,
2329
2339
(
2013
).
7.
W.
Chen
,
X.
Zhang
,
L.
Mi
,
C.
Liu
,
J.
Zhang
,
S.
Cui
,
X.
Feng
,
Y.
Cao
, and
C.
Shen
,
Adv. Mater.
31
,
1806664
(
2019
).
8.
X.
Yu
,
B.
Lu
, and
Z.
Xu
,
Adv. Mater.
26
,
1044
1051
(
2014
).
9.
H.-Y.
Mi
,
X.
Jing
,
A. L.
Politowicz
,
E.
Chen
,
H.-X.
Huang
, and
L.-S.
Turng
,
Carbon
132
,
199
209
(
2018
).
10.
X.-N.
Tang
,
C.-Z.
Liu
,
X.-R.
Chen
,
Y.-Q.
Deng
,
X.-H.
Chen
,
J.-J.
Shao
, and
Q.-H.
Yang
,
Carbon
146
,
147
154
(
2019
).
11.
P.
Xu
,
Q.
Gao
,
L.
Ma
,
Z.
Li
,
H.
Zhang
,
H.
Xiao
,
X.
Liang
,
T.
Zhang
,
X.
Tian
, and
C.
Liu
,
Carbon
149
,
452
461
(
2019
).
12.
H.
Liu
,
M.
Dong
,
W.
Huang
,
J.
Gao
,
K.
Dai
,
J.
Guo
,
G.
Zheng
,
C.
Liu
,
C.
Shen
, and
Z.
Guo
,
J. Mater. Chem. C
5
,
73
83
(
2017
).
13.
N.
Yousefi
,
X.
Lu
,
M.
Elimelech
, and
N.
Tufenkji
,
Nat. Nanotechnol.
14
,
107
119
(
2019
).
14.
V.
Chabot
,
D.
Higgins
,
A.
Yu
,
X.
Xiao
,
Z.
Chen
, and
J.
Zhang
,
Energy Environ. Sci.
7
,
1564
(
2014
).
15.
F.
Li
,
X.
Jiang
,
J.
Zhao
, and
S.
Zhang
,
Nano Energy
16
,
488
515
(
2015
).
16.
X.
Chen
,
X.
Deng
,
N. Y.
Kim
,
Y.
Wang
,
Y.
Huang
,
L.
Peng
,
M.
Huang
,
X.
Zhang
,
X.
Chen
,
D.
Luo
,
B.
Wang
,
X.
Wu
,
Y.
Ma
,
Z.
Lee
, and
R. S.
Ruoff
,
Carbon
132
,
294
303
(
2018
).
17.
L.
Liu
,
H.
Zhou
,
R.
Cheng
,
W. J.
Yu
,
Y.
Liu
,
Y.
Chen
,
J.
Shaw
,
X.
Zhong
,
Y.
Huang
, and
X.
Duan
,
ACS Nano
6
,
8241
8249
(
2012
).
18.
S.
Latil
,
V.
Meunier
, and
L.
Henrard
,
Phys. Rev. B
76
,
201402
(
2007
).
19.
H.
Peng
,
N. B. M.
Schroter
,
J.
Yin
,
H.
Wang
,
T.-F.
Chung
,
H.
Yang
,
S.
Ekahana
,
Z.
Liu
,
J.
Jiang
,
L.
Yang
,
T.
Zhang
,
C.
Chen
,
H.
Ni
,
A.
Barinov
,
Y. P.
Chen
,
Z.
Liu
,
H.
Peng
, and
Y.
Chen
,
Adv. Mater.
29
,
1606741
(
2017
).
20.
K.
Uemura
,
T.
Ikuta
, and
K.
Maehashi
,
Jpn. J. Appl. Phys.
57
,
030311
(
2018
).
21.
M.
Brzhezinskaya
,
O.
Kononenko
,
V.
Matveev
,
A.
Zotov
,
I. I.
Khodos
,
V.
Levashov
,
V.
Volkov
,
S. I.
Bozhko
,
S. V.
Chekmazov
, and
D.
Roshchupkin
,
ACS Nano
15
,
12358
12366
(
2021
).
22.
N.
Richter
,
Y. R.
Hernandez
,
S.
Schweitzer
,
J.-S.
Kim
,
A. K.
Patra
,
J.
Englert
,
I.
Lieberwirth
,
A.
Liscio
,
V.
Palermo
,
X.
Feng
,
A.
Hirsch
,
K.
Müllen
, and
M.
Kläui
,
Phys. Rev. Appl.
7
,
024022
(
2017
).
23.
T.
Ishida
,
Y.
Miyata
,
Y.
Shinoda
, and
Y.
Kobayashi
,
Appl. Phys. Express
9
,
025103
(
2016
).
24.
R.
Negishi
,
M.
Akabori
,
T.
Ito
,
Y.
Watanabe
, and
Y.
Kobayashi
,
Sci. Rep.
6
,
28936
(
2016
).
25.
Z.
Xu
,
S.
Nakamura
,
T.
Inoue
,
Y.
Nishina
, and
Y.
Kobayashi
,
Carbon
185
,
368
375
(
2021
).
26.
Z.
Tang
,
W.
Li
,
X.
Lin
,
H.
Xiao
,
Q.
Miao
,
L.
Huang
,
L.
Chen
, and
H.
Wu
,
Polymers
9
,
421
(
2017
).
27.
M.
Sevilla
and
A. B.
Fuertes
,
Chem. Phys. Lett.
490
,
63
68
(
2010
).
28.
D.
Jariwala
,
T. J.
Marks
, and
M. C.
Hersam
,
Nat. Mater.
16
,
170
181
(
2017
).
29.
X.
Sun
,
Y.
Ding
,
B.
Zhang
,
R.
Huang
, and
D. S.
Su
,
Chem. Commun.
51
,
9145
9148
(
2015
).
30.
V.
Petrakova
,
V.
Benson
,
M.
Buncek
,
A.
Fiserova
,
M.
Ledvina
,
J.
Stursa
,
P.
Cigler
, and
M.
Nesladek
,
Nanoscale
8
,
12002
12012
(
2016
).
31.
P.
Karami
,
S.
Salkhi Khasraghi
,
M.
Hashemi
,
S.
Rabiei
, and
A.
Shojaei
,
Adv. Colloid Interface Sci.
269
,
122
151
(
2019
).
32.
S.
Osswald
,
G.
Yushin
,
V.
Mochalin
,
S. O.
Kucheyev
, and
Y.
Gogotsi
,
J. Am. Chem. Soc.
128
,
11635
11642
(
2006
).
33.
O.
Shenderova
,
A.
Koscheev
,
N.
Zaripov
,
I.
Petrov
,
Y.
Skryabin
,
P.
Detkov
,
S.
Turner
, and
G.
Van Tendeloo
,
J. Phys. Chem. C
115
,
9827
9837
(
2011
).
34.
I. I.
Kulakova
,
Phys. Solid State
46
,
636
643
(
2004
).
35.
X.
Duan
,
Z.
Ao
,
H.
Zhang
,
M.
Saunders
,
H.
Sun
,
Z.
Shao
, and
S.
Wang
,
Appl. Catal. B: Environ.
222
,
176
181
(
2018
).
36.
M.
Zeiger
,
N.
Jäckel
,
V. N.
Mochalin
, and
V.
Presser
,
J. Mater. Chem. A
4
,
3172
3196
(
2016
).
37.
N.
Morimoto
,
T.
Kubo
, and
Y.
Nishina
,
Sci. Rep.
6
, 21715 (
2016
).
38.
L. G.
Cançado
,
K.
Takai
,
T.
Enoki
,
M.
Endo
,
Y. A.
Kim
,
H.
Mizusaki
,
N. L.
Speziali
,
A.
Jorio
, and
M. A.
Pimenta
,
Carbon
46
,
272
275
(
2008
).
39.
L. M.
Malard
,
M. A.
Pimenta
,
G.
Dresselhaus
, and
M. S.
Dresselhaus
,
Phys. Rep.
473
,
51
87
(
2009
).
40.
A. C.
Gadelha
,
D. A. A.
Ohlberg
,
C.
Rabelo
,
E. G. S.
Neto
,
T. L.
Vasconcelos
,
J. L.
Campos
,
J. S.
Lemos
,
V.
Ornelas
,
D.
Miranda
,
R.
Nadas
,
F. C.
Santana
,
K.
Watanabe
,
T.
Taniguchi
,
B.
van Troeye
,
M.
Lamparski
,
V.
Meunier
,
V.-H.
Nguyen
,
D.
Paszko
,
J.-C.
Charlier
,
L. C.
Campos
,
L. G.
Cançado
,
G.
Medeiros-Ribeiro
, and
A.
Jorio
,
Nature
590
,
405
409
(
2021
).
41.
A. C.
Ferrari
and
D. M.
Basko
,
Nat. Nanotechnol.
8
,
235
246
(
2013
).
42.
A. C.
Ferrari
,
J. C.
Meyer
,
V.
Scardaci
,
C.
Casiraghi
,
M.
Lazzeri
,
F.
Mauri
,
S.
Piscanec
,
D.
Jiang
,
K. S.
Novoselov
,
S.
Roth
, and
A. K.
Geim
,
Phys. Rev. Lett.
97
,
187401
(
2006
).
43.
T. A.
Nguyen
,
J.-U.
Lee
,
D.
Yoon
, and
H.
Cheong
,
Sci. Rep.
4
,
4630
(
2015
).
44.
K. F.
Mak
,
J.
Shan
, and
T. F.
Heinz
,
Phys. Rev. Lett.
104
,
176404
(
2010
).
45.
S.
Stankovich
,
D. A.
Dikin
,
R. D.
Piner
,
K. A.
Kohlhaas
,
A.
Kleinhammes
,
Y.
Jia
,
Y.
Wu
,
S. T.
Nguyen
, and
R. S.
Ruoff
,
Carbon
45
,
1558
1565
(
2007
).
46.
L. G.
Cancado
,
A.
Jorio
,
E. H. M.
Ferreira
,
F.
Stavale
,
C. A.
Achete
,
R. B.
Capaz
,
M. V. O.
Moutinho
,
A.
Lombardo
,
T. S.
Kulmala
, and
A. C.
Ferrari
,
Nano Lett.
11
,
3190
3196
(
2011
).
47.
S.
Eigler
,
C.
Dotzer
, and
A.
Hirsch
,
Carbon
50
,
3666
3673
(
2012
).
48.
B.
Ma
,
R. D.
Rodriguez
,
A.
Ruban
,
S.
Pavlov
, and
E.
Sheremet
,
Phys. Chem. Chem. Phys.
21
,
10125
10134
(
2019
).
49.
E. B.
Barros
,
N. S.
Demir
,
A. G.
Souza Filho
,
J.
Mendes Filho
,
A.
Jorio
,
G.
Dresselhaus
, and
M. S.
Dresselhaus
,
Phys. Rev. B
71
,
165422
(
2005
).
50.
A.
Mohapatra
,
M. S. R.
Rao
, and
M.
Jaiswal
,
Carbon
201
,
120
128
(
2023
).
51.
M. A.
Pimenta
,
G.
Dresselhaus
,
M. S.
Dresselhaus
,
L. G.
Cancado
,
A.
Jorio
, and
R.
Saito
,
Phys. Chem. Chem. Phys.
9
,
1276
1290
(
2007
).
52.
R.
Negishi
,
C.
Wei
,
Y.
Yao
,
Y.
Ogawa
,
M.
Akabori
,
Y.
Kanai
,
K.
Matsumoto
,
Y.
Taniyasu
, and
Y.
Kobayashi
,
Phys. Status Solidi B
257
,
1900437
(
2020
).
54.
C.
Hontoria-Lucas
,
A. J.
López-Peinado
,
J. D.
López-González
,
M. L.
Rojas-Cervantes
, and
R. M.
Martín-Aranda
,
Carbon
33
,
1585
1592
(
1995
).
55.
H.
He
,
J.
Klinowski
,
M.
Forster
, and
A.
Lerf
,
Chem. Phys. Lett.
287
,
53
56
(
1998
).
56.
I. K.
Moon
,
J.
Lee
,
R. S.
Ruoff
, and
H.
Lee
,
Nat. Commun.
1
,
73
(
2010
).
57.
58.
V.
Uvarov
and
I.
Popov
,
Mater. Charact.
58
,
883
891
(
2007
).
59.
N.
Gupta
,
S.
Walia
,
U.
Mogera
, and
G. U.
Kulkarni
,
J. Phys. Chem. Lett.
11
,
2797
2803
(
2020
).
60.
J. S.
Roh
,
T. H.
Choi
,
T. H.
Lee
,
H. W.
Yoon
,
J.
Kim
,
H. W.
Kim
, and
H. B.
Park
,
J. Phys. Chem. Lett.
10
,
7725
7731
(
2019
).
61.
Z.
Fan
,
K.
Wang
,
T.
Wei
,
J.
Yan
,
L.
Song
, and
B.
Shao
,
Carbon
48
,
1686
1689
(
2010
).
62.
X.
He
,
L.
Feng
,
Z.
Zhang
,
X.
Hou
,
X.
Ye
,
Q.
Song
,
Y.
Yang
,
G.
Suo
,
L.
Zhang
,
Q.-G.
Fu
, and
H.
Li
,
ACS Nano
15
,
2880
2892
(
2021
).
63.
K.
Kanishka
,
H.
De Silva
,
H.-H.
Huang
,
S.
Suzuki
, and
M.
Yoshimura
,
Jpn. J. Appl. Phys.
58
,
SIIB07
(
2019
).

Supplementary Material

You do not currently have access to this content.