Two-dimensional halide perovskite Cs2PbI2Cl2 with the Ruddlesden–Popper structure has attracted much interest in both experiment and theory, owing to its excellent structural stability and electronic and optical properties. Here, we design the graphene/Cs2PbI2Cl2 van der Waals (vdW) heterostructure (HS) and comprehensively investigate its structural, electronic, and contact properties by using first principle calculations. Four types of graphene/Cs2PbI2Cl2 HSs are considered, and the most stable one is identified. Because the composed system has weak vdW interaction, the intrinsic band structures of both graphene and Cs2PbI2Cl2 are well maintained. Meanwhile, the graphene opens a minute energy gap of about 68 meV, which may have resulted from a broken sublattice inversion symmetry and tiny structure distortion. Moreover, it is found that graphene/Cs2PbI2Cl2 forms a p-type Schottky contact. The HS undergoes a contact-type transition to p-type Ohmic contact and n-type Ohmic contact from the original p-type Schottky contact under positive and negative electric fields, respectively. When interlayer coupling strength increases or decreases, a contact-type transition to the p-type Ohmic contact from the original p-type Schottky contact occurs. These findings provide a meaningful guidance for tuning the electronic properties and constructing high-performance graphene/Cs2PbI2Cl2 HS-based Schottky devices.

1.
E.
Shi
,
Y.
Gao
,
B. P.
Finkenauer
,
Akriti
,
A. H.
Coffey
, and
L.
Dou
, “
Two-dimensional halide perovskite nanomaterials and HSs
,”
Chem. Soc. Rev.
47
,
6046
6072
(
2018
).
2.
S.
Ghimire
and
C.
Klinke
, “
Two-dimensional halide perovskites: Synthesis, optoelectronic properties, stability, and applications
,”
Nanoscale
13
,
12394
12422
(
2021
).
3.
T.
Song
,
Q.-X.
Ma
,
Q.
Wang
, and
H.-L.
Zhang
, “
Design of two-dimensional halide perovskite composites for optoelectronic applications and beyond
,”
Mater. Adv.
3
,
756
778
(
2022
).
4.
M.
Ezzeldien
,
S.
Al-Qaisi
,
Z. A.
Alrowaili
,
M.
Alzaid
,
E.
Maskar
,
A.
Es-Smairi
,
T. V.
Vu
, and
D. P.
Rai
, “
Electronic and optical properties of bulk and surface of CsPbBr3 inorganic halide perovskite a first principles DFT 1/2 approach
,”
Sci. Rep.
11
,
20622
(
2021
).
5.
C. C.
Stoumpos
,
D. H.
Cao
,
D. J.
Clark
,
J.
Young
,
J. M.
Rondinelli
,
J. I.
Jang
,
J. T.
Hupp
, and
M. G.
Kanatzidis
, “
Ruddlesden–popper hybrid lead iodide perovskite 2D homologous semiconductors
,”
Chem. Mater.
28
,
2852
2867
(
2016
).
6.
C. C.
Stoumpos
,
C. M. M.
Soe
,
H.
Tsai
,
W.
Nie
,
J.-C.
Blancon
,
D. H.
Cao
,
F.
Liu
,
B.
Traoré
,
C.
Katan
,
J.
Even
,
A. D.
Mohite
, and
M. G.
Kanatzidis
, “
High members of the 2D ruddlesden-popper halide perovskites: Synthesis, optical properties, and solar cells of (CH3(CH2)3NH3)2(CH3NH3)4Pb5I16
,”
Chem
2
,
427
440
(
2017
).
7.
H.
Tsai
,
W.
Nie
,
J.-C.
Blancon
,
C. C.
Stoumpos
,
R.
Asadpour
,
B.
Harutyunyan
,
A. J.
Neukirch
,
R.
Verduzco
,
J. J.
Crochet
,
S.
Tretiak
,
L.
Pedesseau
,
J.
Even
,
M. A.
Alam
,
G.
Gupta
,
J.
Lou
,
P. M.
Ajayan
,
M. J.
Bedzyk
,
M. G.
Kanatzidis
, and
A. D.
Mohite
, “
High-efficiency two-dimensional Ruddlesden–Popper perovskite solar cells
,”
Nature
536
,
312
316
(
2016
).
8.
L.
Mao
,
W.
Ke
,
L.
Pedesseau
,
Y.
Wu
,
C.
Katan
,
J.
Even
,
M. R.
Wasielewski
,
C. C.
Stoumpos
, and
M. G.
Kanatzidis
, “
Hybrid dion–Jacobson 2D lead iodide perovskites
,”
J. Am. Chem. Soc.
140
,
3775
3783
(
2018
).
9.
B.
Vargas
,
E.
Ramos
,
E.
Pérez-Gutiérrez
,
J. C.
Alonso
, and
D.
Solis-Ibarra
, “
A direct bandgap copper–antimony halide perovskite
,”
J. Am. Chem. Soc.
139
,
9116
9119
(
2017
).
10.
C. M. M.
Soe
,
C. C.
Stoumpos
,
M.
Kepenekian
,
B.
Traoré
,
H.
Tsai
,
W.
Nie
,
B.
Wang
,
C.
Katan
,
R.
Seshadri
,
A. D.
Mohite
,
J.
Even
,
T. J.
Marks
, and
M. G.
Kanatzidis
, “
New type of 2D perovskites with alternating cations in the interlayer space, [C(NH2)3](CH3NH3)nPbnI3n+1: Structure, properties, and photovoltaic performance
,”
J. Am. Chem. Soc.
139
,
16297
16309
(
2017
).
11.
L.
Dou
,
A. B.
Wong
,
Y.
Yu
,
M.
Lai
,
N.
Kornienko
,
S. W.
Eaton
,
A.
Fu
,
C. G.
Bischak
,
J.
Ma
,
T.
Ding
,
N. S.
Ginsberg
,
L.-W.
Wang
,
A. P.
Alivisatos
, and
P.
Yang
, “
Atomically thin two-dimensional organic-inorganic hybrid perovskites
,”
Science
349
,
1518
1521
(
2015
).
12.
J.
Ma
,
C.
Fang
,
C.
Chen
,
L.
Jin
,
J.
Wang
,
S.
Wang
,
J.
Tang
, and
D.
Li
, “
Chiral 2D perovskites with a high degree of circularly polarized photoluminescence
,”
ACS Nano
13
,
3659
3665
(
2019
).
13.
J.
Wang
,
C.
Fang
,
J.
Ma
,
S.
Wang
,
L.
Jin
,
W.
Li
, and
D.
Li
, “
Aqueous synthesis of low-dimensional lead halide perovskites for room-temperature circularly polarized light emission and detection
,”
ACS Nano
13
,
9473
9481
(
2019
).
14.
D. H.
Cao
,
C. C.
Stoumpos
,
O. K.
Farha
,
J. T.
Hupp
, and
M. G.
Kanatzidis
, “
2D homologous perovskites as light-absorbing materials for solar cell applications
,”
J. Am. Chem. Soc.
137
,
7843
7850
(
2015
).
15.
J.
Wang
,
J.
Li
,
S.
Lan
,
C.
Fang
,
H.
Shen
,
Q.
Xiong
, and
D.
Li
, “
Controllable growth of centimeter-sized 2D perovskite HSs for highly narrow dual-band photodetectors
,”
ACS Nano
13
,
5473
5484
(
2019
).
16.
J.
Zhou
,
Y.
Chu
, and
J.
Huang
, “
Photodetectors based on two-dimensional layer-structured hybrid lead iodide perovskite semiconductors
,”
ACS Appl. Mater. Interfaces
8
,
25660
25666
(
2016
).
17.
C.
Fang
,
J.
Li
,
J.
Wang
,
R.
Chen
,
H.
Wang
,
S.
Lan
,
Y.
Xuan
,
H.
Luo
,
P.
Fei
, and
D.
Li
, “
Controllable growth of two-dimensional perovskite microstructures
,”
CrystEngComm
20
,
6538
6545
(
2018
).
18.
J.
Chen
,
L.
Gan
,
F.
Zhuge
,
H.
Li
,
J.
Song
,
H.
Zeng
, and
T.
Zhai
, “
A ternary solvent method for large-sized two-dimensional perovskites
,”
Angew. Chem. Int. Ed.
56
,
2390
2394
(
2017
).
19.
I. C.
Smith
,
E. T.
Hoke
,
D.
Solis-Ibarra
,
M. D.
McGehee
, and
H. I.
Karunadasa
, “
A layered hybrid perovskite solar-cell absorber with enhanced moisture stability
,”
Angew. Chem. Int. Ed.
53
,
11232
11235
(
2014
).
20.
N.
Wang
,
L.
Cheng
,
R.
Ge
,
S.
Zhang
,
Y.
Miao
,
W.
Zou
,
C.
Yi
,
Y.
Sun
,
Y.
Cao
,
R.
Yang
,
Y.
Wei
,
Q.
Guo
,
Y.
Ke
,
M.
Yu
,
Y.
Jin
,
Y.
Liu
,
Q.
Ding
,
D.
Di
,
L.
Yang
,
G.
Xing
,
H.
Tian
,
C.
Jin
,
F.
Gao
,
R. H.
Friend
,
J.
Wang
, and
W.
Huang
, “
Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells
,”
Nat. Photonics
10
,
699
704
(
2016
).
21.
H.
Tsai
,
C.
Liu
,
E.
Kinigstein
,
M.
Li
,
S.
Tretiak
,
M.
Cotlet
,
X.
Ma
,
X.
Zhang
, and
W.
Nie
, “
Critical role of organic spacers for bright 2D layered perovskites light-emitting diodes
,”
Adv. Sci.
7
,
1903202
(
2020
).
22.
J.
Song
,
L.
Xu
,
J.
Li
,
J.
Xue
,
Y.
Dong
,
X.
Li
, and
H.
Zeng
, “
Monolayer and Few-layer All-inorganic perovskites as a New family of Two-dimensional semiconductors for printable optoelectronic devices
,”
Adv. Mater.
28
,
4861
4869
(
2016
).
23.
Y.
Liu
,
H.
Ye
,
Y.
Zhang
,
K.
Zhao
,
Z.
Yang
,
Y.
Yuan
,
H.
Wu
,
G.
Zhao
,
Z.
Yang
,
J.
Tang
,
Z.
Xu
, and
S.
Liu
, “
Surface-tension-controlled crystallization for high-quality 2D perovskite single crystals for ultrahigh photodetection
,”
Matter
1
,
465
480
(
2019
).
24.
J.
Li
,
Q.
Yu
,
Y.
He
,
C. C.
Stoumpos
,
G.
Niu
,
G. G.
Trimarchi
,
H.
Guo
,
G.
Dong
,
D.
Wang
,
L.
Wang
, and
M. G.
Kanatzidis
, “
Cs2pbi2cl2, all-inorganic two-dimensional Ruddlesden–Popper mixed halide perovskite with optoelectronic response
,”
J. Am. Chem. Soc.
140
,
11085
11090
(
2018
).
25.
Q. A.
Akkerman
,
E.
Bladt
,
U.
Petralanda
,
Z.
Dang
,
E.
Sartori
,
D.
Baranov
,
A. L.
Abdelhady
,
I.
Infante
,
S.
Bals
, and
L.
Manna
, “
Fully inorganic Ruddlesden–Popper double Cl–I and triple Cl–Br–I lead halide perovskite nanocrystals
,”
Chem. Mater.
31
,
2182
2190
(
2019
).
26.
P.
Acharyya
,
K.
Maji
,
K.
Kundu
, and
K.
Biswas
, “
2D nanoplates and scaled-Up bulk polycrystals of Ruddlesden–Popper Cs2PbI2Cl2 for optoelectronic applications
,”
ACS Appl. Nano Mater.
3
,
877
886
(
2020
).
27.
Z.
Xu
,
M.
Chen
, and
S. F.
Liu
, “
Layer-dependent ultrahigh-mobility transport properties in all-inorganic two-dimensional Cs2PbI2Cl2 and Cs2SnI2Cl2 perovskites
,”
J. Phys. Chem. C
123
,
27978
27985
(
2019
).
28.
L.-Y.
Pan
,
Y.-F.
Ding
,
Z.-L.
Yu
,
Q.
Wan
,
B.
Liu
, and
M.-Q.
Cai
, “
Layer-dependent optoelectronic property for all-inorganic two-dimensional mixed halide perovskite Cs2PbI2Cl2 with a Ruddlesden-Popper structure
,”
J. Power Sources
451
,
227732
(
2020
).
29.
Y.
Zhou
,
J.
Li
,
C.
Fang
,
J.
Ma
,
L.
Li
, and
D.
Li
, “
Exciton–phonon interaction-induced large in-plane optical anisotropy in two-dimensional all-inorganic perovskite crystals
,”
J. Phys. Chem. Lett.
12
,
3387
3392
(
2021
).
30.
S.
Guo
,
K.
Bu
,
J.
Li
,
Q.
Hu
,
H.
Luo
,
Y.
He
,
Y.
Wu
,
D.
Zhang
,
Y.
Zhao
,
W.
Yang
,
M. G.
Kanatzidis
, and
X.
, “
Enhanced photocurrent of all-inorganic two-dimensional perovskite Cs2PbI2Cl2 via pressure-regulated excitonic features
,”
J. Am. Chem. Soc.
143
,
2545
2551
(
2021
).
31.
S.
Yang
,
W.
Liu
,
Y.
Han
,
Z.
Liu
,
W.
Zhao
,
C.
Duan
,
Y.
Che
,
H.
Gu
,
Y.
Li
, and
S.
Liu
, “
2D Cs2PbI2Cl2 nanosheets for holistic passivation of inorganic CsPbI2Br perovskite solar cells for improved efficiency and stability
,”
Adv. Energy Mater.
10
,
2002882
(
2020
).
32.
X.
Li
,
M.
Chen
,
S.
Mei
,
B.
Wang
,
K.
Wang
,
G.
Xing
, and
Z.
Tang
, “
Light-induced phase transition and photochromism in all-inorganic two-dimensional Cs2PbI2Cl2 perovskite
,”
Sci. China Mater.
63
,
1510
1517
(
2020
).
33.
Y.
Liu
,
N. O.
Weiss
,
X.
Duan
,
H.-C.
Cheng
,
Y.
Huang
, and
X.
Duan
, “
Van der Waals heterostructures and devices
,”
Nat. Rev. Mater.
1
,
16042
(
2016
).
34.
C.
Gong
and
X.
Zhang
, “
Two-dimensional magnetic crystals and emergent HS devices
,”
Science
363
,
eaav4450
(
2019
).
35.
X.
Cui
,
G.-H.
Lee
,
Y. D.
Kim
,
G.
Arefe
,
P. Y.
Huang
,
C.-H.
Lee
,
D. A.
Chenet
,
X.
Zhang
,
L.
Wang
,
F.
Ye
,
F.
Pizzocchero
,
B. S.
Jessen
,
K.
Watanabe
,
T.
Taniguchi
,
D. A.
Muller
,
T.
Low
,
P.
Kim
, and
J.
Hone
, “
Multi-terminal transport measurements of MoS2 using a van der Waals HS device platform
,”
Nat. Nanotechnol.
10
,
534
540
(
2015
).
36.
A.
Allain
,
J.
Kang
,
K.
Banerjee
, and
A.
Kis
, “
Electrical contacts to two-dimensional semiconductors
,”
Nat. Mater.
14
,
1195
1205
(
2015
).
37.
J.
Kang
,
W.
Liu
,
D.
Sarkar
,
D.
Jena
, and
K.
Banerjee
, “
Computational study of metal contacts to monolayer transition-metal dichalcogenide semiconductors
,”
Phys. Rev. X
4
,
031005
(
2014
).
38.
H.
Henck
,
Z.
Ben Aziza
,
D.
Pierucci
,
F.
Laourine
,
F.
Reale
,
P.
Palczynski
,
J.
Chaste
,
M. G.
Silly
,
F.
Bertran
,
P.
Le Fèvre
,
E.
Lhuillier
,
T.
Wakamura
,
C.
Mattevi
,
J. E.
Rault
,
M.
Calandra
, and
A.
Ouerghi
, “
Electronic band structure of two-dimensional WS2/graphene van der Waals HSs
,”
Phys. Rev. B
97
,
155421
(
2018
).
39.
D.
Pierucci
,
H.
Henck
,
J.
Avila
,
A.
Balan
,
C. H.
Naylor
,
G.
Patriarche
,
Y. J.
Dappe
,
M. G.
Silly
,
F.
Sirotti
,
A. T. C.
Johnson
,
M. C.
Asensio
, and
A.
Ouerghi
, “
Band alignment and minigaps in monolayer MoS2-graphene van der Waals HSs
,”
Nano Lett.
16
,
4054
4061
(
2016
).
40.
Z.
Ben Aziza
,
H.
Henck
,
D.
Pierucci
,
M. G.
Silly
,
E.
Lhuillier
,
G.
Patriarche
,
F.
Sirotti
,
M.
Eddrief
, and
A.
Ouerghi
, “
Van der Waals epitaxy of GaSe/graphene HS: Electronic and interfacial properties
,”
ACS Nano
10
,
9679
9686
(
2016
).
41.
S.
Sinha
,
T.
Zhu
,
A.
France-Lanord
,
Y.
Sheng
,
J. C.
Grossman
,
K.
Porfyrakis
, and
J. H.
Warner
, “
Atomic structure and defect dynamics of monolayer lead iodide nanodisks with epitaxial alignment on graphene
,”
Nat. Commun.
11
,
823
(
2020
).
42.
P.-H.
Chang
,
C.-S.
Li
,
F.-Y.
Fu
,
K.-Y.
Huang
,
A.-S.
Chou
, and
C.-I.
Wu
, “
Ultrasensitive photoresponsive devices based on graphene/BiI3 van der Waals epitaxial HSs
,”
Adv. Funct. Mater.
28
,
1800179
(
2018
).
43.
J. E.
Padilha
,
A.
Fazzio
, and
A. J. R.
da Silva
, “
Van der Waals HS of phosphorene and graphene: Tuning the Schottky barrier and doping by electrostatic gating
,”
Phys. Rev. Lett.
114
,
066803
(
2015
).
44.
D. S.
Koda
,
F.
Bechstedt
,
M.
Marques
, and
L. K.
Teles
, “
Trends on band alignments: Validity of Anderson’s rule in SnS2 and SnSe2-based van der Waals HSs
,”
Phys. Rev. B
97
,
165402
(
2018
).
45.
X.
Gao
,
Y.
Shen
,
Y.
Ma
,
S.
Wu
, and
Z.
Zhou
, “
Graphene/g-GeC bilayer HS: Modulated electronic properties and interface contact via external vertical strains and electric fields
,”
Carbon
146
,
337
347
(
2019
).
46.
G.
Kresse
and
J.
Furthmüller
, “
Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
,”
Phys. Rev. B
54
,
11169
11186
(
1996
).
47.
G.
Kresse
and
J.
Furthmüller
, “
Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
,”
Comput. Mater. Sci.
6
,
15
50
(
1996
).
48.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
,
3865
3868
(
1996
).
49.
P. E.
Blöchl
, “
Projector augmented-wave method
,”
Phys. Rev. B
50
,
17953
17979
(
1994
).
50.
G.
Kresse
and
D.
Joubert
, “
From ultrasoft pseudopotentials to the projector augmented-wave method
,”
Phys. Rev. B
59
,
1758
1775
(
1999
).
51.
H. J.
Monkhorst
and
J. D.
Pack
, “
Special points for Brillouin-zone integrations
,”
Phys. Rev. B
13
,
5188
5192
(
1976
).
52.
G.
Henkelman
,
A.
Arnaldsson
, and
H.
Jónsson
, “
A fast and robust algorithm for bader decomposition of charge density
,”
Comput. Mater. Sci.
36
,
354
360
(
2006
).
53.
J.
Neugebauer
and
M.
Scheffler
, “
Adsorbate-substrate and adsorbate-adsorbate interactions of Na and K adlayers on Al(111)
,”
Phys. Rev. B
46
,
16067
16080
(
1992
).
54.
S.
Grimme
, “
Semiempirical GGA-type density functional constructed with a long-range dispersion correction
,”
J. Comput. Chem.
27
,
1787
1799
(
2006
).
55.
A. H.
Castro Neto
,
F.
Guinea
,
N. M. R.
Peres
,
K. S.
Novoselov
, and
A. K.
Geim
, “
The electronic properties of graphene
,”
Rev. Mod. Phys.
81
,
109
162
(
2009
).
56.
H. T. T.
Nguyen
,
M. M.
Obeid
,
A.
Bafekry
,
M.
Idrees
,
T. V.
Vu
,
H. V.
Phuc
,
N. N.
Hieu
,
L. T.
Hoa
,
B.
Amin
, and
C. V.
Nguyen
, “
Interfacial characteristics, Schottky contact, and optical performance of a graphene/Ga2SSe van der Waals HS: Strain engineering and electric field tunability
,”
Phys. Rev. B
102
,
075414
(
2020
).
57.
C. V.
Nguyen
,
M.
Idrees
,
H. V.
Phuc
,
N. N.
Hieu
,
N. T. T.
Binh
,
B.
Amin
, and
T. V.
Vu
, “
Interlayer coupling and electric field controllable Schottky barriers and contact types in graphene/PbI2 HSs
,”
Phys. Rev. B
101
,
235419
(
2020
).
58.
Y.
Cai
,
G.
Zhang
, and
Y.-W.
Zhang
, “
Electronic properties of phosphorene/graphene and phosphorene/hexagonal boron nitride HSs
,”
J. Phys. Chem. C
119
,
13929
13936
(
2015
).
59.
C. V.
Nguyen
, “
Electric gating and interlayer coupling controllable electronic structure and Schottky contact of graphene/BiI3 van der Waals HS
,”
Phys. Rev. B
103
,
115429
(
2021
).
60.
R. T.
Tung
, “
The physics and chemistry of the Schottky barrier height
,”
Appl. Phys. Rev.
1
,
011304
(
2014
).
61.
M.
Yankowitz
,
K.
Watanabe
,
T.
Taniguchi
,
P.
San-Jose
, and
B. J.
LeRoy
, “
Pressure-induced commensurate stacking of graphene on boron nitride
,”
Nat. Commun.
7
,
13168
(
2016
).
62.
P. K.
Nayak
,
Y.
Horbatenko
,
S.
Ahn
,
G.
Kim
,
J.-U.
Lee
,
K. Y.
Ma
,
A. R.
Jang
,
H.
Lim
,
D.
Kim
,
S.
Ryu
,
H.
Cheong
,
N.
Park
, and
H. S.
Shin
, “
Probing evolution of twist-angle-dependent interlayer excitons in MoSe2/WSe2 van der Waals HSs
,”
ACS Nano
11
,
4041
4050
(
2017
).

Supplementary Material

You do not currently have access to this content.