Amorphous silicon dioxide (hereafter SiO2) samples were implanted with 380 keV Fe ions at room temperature. After the implantation, some samples were irradiated with 16 MeV Au ions. The magnetic property was investigated by using a SQUID magnetometer, and the morphology of Fe-implanted SiO2 samples was examined by using a transmission electron microscope and x-ray absorption spectroscopy (extended x-ray absorption fine structure and x-ray absorption near edge structure). The size of Fe nanoparticles increases with an increase in the amount of Fe implantation. A part of Fe nanoparticles consists of Fe oxides, and with an increase in the amount of Fe implantation, the valence state of Fe atoms and the structure of Fe nanoparticles gets close to those of metallic α-Fe. The room temperature magnetism was observed in Fe-implanted SiO2 samples. The magnetization–magnetic field curves for samples implanted with a small amount of Fe are reproduced by the Langevin equation, implying that Fe nanoparticles present the superparamagnetic behavior. For a large amount of Fe implantation, the magnetization–magnetic field curve shows the ferromagnetic state. Such a result of magnetic property is consistent with the results of the x-ray absorption. By the subsequent 16 MeV Au irradiation, the Fe nanoparticles were fragmentated, resulting in the decrease in magnetization. The optical absorption property of the SiO2 samples is briefly discussed.

1.
P.
Kumar
,
R.
Kumar
,
D.
Kanjilal
,
M.
Knobel
,
P.
Thakur
, and
K. H.
Chae
,
J. Vac. Sci. Technol. B
26
,
L36
L40
(
2008
).
2.
X.-J.
Zhang
,
Y.-H.
Wang
,
H.-J.
Chen
, and
L.-R.
Zheng
,
J. Alloys Compd.
654
,
176
179
(
2016
).
3.
S. K.
Sharma
,
P.
Kumar
,
R.
Kumar
,
M.
Knobel
,
P.
Thakur
,
K. H.
Chae
,
W. K.
Choi
,
R.
Kumar
, and
D.
Kanjilal
,
J. Phys.: Condens. Matter
20
,
285211
(
2008
).
4.
H.
Amekura
,
H.
Kitazawa
,
N.
Umeda
,
Y.
Takeda
, and
N.
Kishimoto
,
Nucl. Instrum. Methods Phys. Res., Sect. B
222
,
114
122
(
2004
).
5.
I. S.
Edelman
,
D. A.
Petrov
,
R. D.
Ivantsov
,
S. M.
Zharkov
,
D. A.
Velikanov
,
G. G.
Gumarov
,
V. I.
Nuzhdin
,
V. F.
Valeev
, and
A. L.
Stepanov
,
Phys. Rev. B
87
(
11
),
115435
(
2013
).
6.
I. S.
Edelman
,
E. A.
Petrkovskaja
,
D. A.
Petrov
,
S. M.
Zharkov
,
R. I.
Khaibullin
,
V. I.
Nuzhdin
, and
A. L.
Stepanov
,
Appl. Magn. Reson.
40
,
363
375
(
2011
).
7.
T.
Isobe
,
R. A.
Weeks
, and
R. A.
Zuhr
,
Solid State Commun.
105
,
469
472
(
1998
).
8.
O.
Cintora-Gonzalez
,
D.
Muller
,
C.
Estournes
,
M.
Richard-Plouet
,
R.
Poinsot
,
J. J.
Grob
, and
J.
Guille
,
Nucl. Instrum. Methods Phys. Res., Sect. B
178
,
144
147
(
2001
).
9.
C.
D”Orleans
,
J. P.
Stoquert
,
C.
Estournes
,
C.
Cerruti
,
J. J.
Grob
,
J. L.
Guille
,
F.
Haas
,
D.
Muller
, and
M.
Richard-Plouet
,
Phys. Rev. B
67
(
22
),
220101(R)
(
2003
).
10.
G.
Mattei
,
C.
Maurizio
,
C.
de Julian Fernandez
,
P.
Mazzoldi
,
G.
Battaglin
,
P.
Canton
,
E.
Cattaruzza
, and
C.
Scian
,
Nucl. Instrum. Methods Phys. Res., Sect. B
250
,
206
209
(
2006
).
11.
J.
Leveneur
,
G. V. M.
Williams
,
D. R. G.
Mitchell
, and
J.
Kennedy
,
Emerg. Mater.
2
,
313
325
(
2019
).
12.
I. S.
Edelman
,
O. V.
Vorotynova
,
V. A.
Seredkin
,
V. N.
Zabluda
,
R. D.
Ivantsov
,
Y. I.
Gatiyatova
,
V. F.
Valeev
,
R. I.
Khaibullin
, and
A. L.
Stepanov
,
Phys. Solid State
50
,
2088
2094
(
2008
).
13.
F.
Yildiz
,
H. J.
Lee
,
Y. H.
Jeong
,
S.
Kazan
,
B.
Aktas
, and
J. H.
Song
,
J. Korean Phys. Soc.
53
,
3699
3703
(
2008
).
14.
H.
Amekura
,
N.
Umeda
,
Y.
Takeda
,
J.
Lu
, and
N.
Kishimoto
,
Appl. Phys. Lett.
85
,
1015
1017
(
2004
).
15.
H.
Amekura
,
N.
Umeda
,
Y.
Takeda
,
J.
Lu
,
K.
Kono
, and
N.
Kishimoto
,
Nucl. Instrum. Methods Phys. Res., Sect. B
230
,
193
197
(
2005
).
16.
J.
Leveneur
,
G. I. N.
Waterhouse
,
J.
Kennedy
,
J. B.
Metson
, and
D. R. G.
Mitchell
,
J. Phys. Chem. C
115
,
20978
20985
(
2011
).
17.
J.
Leveneur
,
J.
Kennedy
,
G. V. M.
Williams
,
J.
Metson
, and
A.
Markwitz
,
Appl. Phys. Lett.
98
(
1–3
),
053111
(
2011
).
18.
E. Z.
Kurmaev
,
D. A.
Zatsepin
,
S. O.
Cholakh
,
B.
Schmidt
,
Y.
Harada
,
T.
Tokushima
,
H.
Osawa
,
S.
Shin
, and
T.
Takeuchi
,
Phys. Solid State
47
,
754
757
(
2005
).
19.
K.
Bharuth-Ram
,
T. B.
Doyle
,
K.
Zhang
,
H.
Masenda
, and
H.
Hofsass
,
Phys. Procedia
75
,
565
571
(
2015
).
20.
K.
Nomura
and
H.
Reuther
,
J. Radioanal. Nucl. Chem.
287
,
341
346
(
2011
).
21.
G.
Mattei
,
C.
de Julian Fernandez
,
G.
Battaglin
,
C.
Maurizio
,
P.
Mazzoldi
, and
C.
Scian
,
Nucl. Instrum. Methods Phys. Res., Sect. B
250
,
225
228
(
2006
).
22.
G.
Mattei
,
G.
Battaglin
,
V.
Bello
,
E.
Cattaruzza
,
C.
De Julian
,
G.
De Marchi
,
C.
Maurizio
,
P.
Mazzoldi
,
M.
Parolin
, and
C.
Sada
,
Nucl. Instrum. Methods Phys. Res., Sect. B
218
,
433
437
(
2004
).
23.
G. V. M.
Williams
,
T.
Prakash
, and
J.
Kennedy
,
Nucl. Instrum. Methods Phys. Res., Sect. B
409
,
187
191
(
2017
).
24.
T.
Prakash
,
G. V. M.
Williams
,
J.
Kennedy
, and
S.
Rubanov
,
J. Alloys Compd.
667
,
255
261
(
2016
).
25.
G. V. M.
Williams
,
J.
Kennedy
,
P. P.
Murmu
,
S.
Rubanov
, and
S. V.
Chong
,
J. Magn. Magn. Mater.
473
,
125
130
(
2019
).
26.
E. A.
Dawi
,
T.
Ommar
,
R.
Ackermann
, and
A. A.
Karar
,
Int. J. Smart Nano Mater.
11
,
147
158
(
2020
).
27.
J.
Ziegler
, see https://www.srim.org/ for information about the depth profiles of the atomic displacement cross sections and the concentration of implanting ions.
28.
W.
Primak
,
Phys. Rev. B
6
,
4846
4851
(
1972
).
29.
R. Y.
Umetsu
,
S.
Semboshi
,
Y.
Mitsui
,
H.
Katsui
,
Y.
Nozaki
,
I.
Yuitoo
,
T.
Takeuchi
,
M.
Saito
, and
H.
Kawarada
,
Mater. Trans.
62
,
680
687
(
2021
).
30.
T.
Yamada
,
K.
Fukuda
,
S.
Semboshi
,
Y.
Saitoh
,
H.
Amekura
,
A.
Iwase
, and
F.
Hori
,
Nanotechnology
31
(
1–12
),
455706
(
2020
).
31.
J. D.
McBrayer
,
R. M.
Swanson
, and
T. W.
Sigmon
,
J. Electrochem. Soc.
133
,
1242
1246
(
1986
).
32.
D. A.
Pamappa
and
W. B.
Henley
,
J. Electrochem. Soc.
146
,
3773
3777
(
1999
).
33.
H.
Kumar
,
S.
Ghosh
,
D. K.
Avasthi
,
D.
Kabiraj
,
A.
Mucklich
,
S.
Zhou
,
H.
Schmidt
, and
J.-P.
Stoquert
,
Nanoscale Res. Lett.
6
(
1–9
),
155
(
2011
).
34.
R.
Giulian
,
P.
Kluth
,
L. L.
Araujo
,
D. J.
Sprouster
,
A. P.
Byrne
,
D. J.
Cookson
, and
M. C.
Ridgway
,
Phys. Rev. B
78
(
12
),
125413
(
2008
).
35.
F.
Chen
,
H.
Amekura
, and
Y.
Jia
,
Ion Irradiation of Dielectrics for Photonic Applications
(
Springer
,
Singapore
,
2020
), Chap. 5, pp.
109
173
.
You do not currently have access to this content.