The nickel-based NiMo–Y2O3NP alloy has been identified as a potential structural material to be used for advanced reactors. In this study, the microstructural evolution behavior of oxide-dispersion-strengthened NiMo–Y2O3 alloys irradiated with He+ ions possessing different incident particle energies (0.5, 1.0, and 2.0 MeV) was investigated by transmission electron microscopy, simulation calculations, and nanoindentation tests. The experimental results showed that helium bubbles were generated in all three irradiated samples of the NiMo–Y2O3NP alloy, where more than half of the bubbles were smaller than 4 nm in diameter. As the energy of the incident He+ irradiating ion increased, the number density of helium bubbles decreased, but their average size increased within the tolerance of the error, inducing an increase in the volume fraction of helium bubbles in the damage peak region. This could be attributed to the decrease in helium concentration and increase in the ratio of vacancies to helium atoms (Vac./He) in helium bubbles in the damage peak region. In addition, the average nanohardness of the irradiated samples S1, S2, and S3 was higher than that of the unirradiated sample S0. In this study, we evaluated the effects of He+ irradiating ion energy on the evolution behavior of helium bubbles in the alloy, providing a reference for further research on the evolution behavior of helium-induced damage defects of structural materials.

1.
A Technology Roadmap for Generation IV Nuclear Energy Systems, GIF-002-00, Issued by the U.S., DOE Nuclear Energy Research Advisory Committee and the Generation IV International Forum, December (
2002
).
2.
L.
Mathieu
,
D.
Heuer
,
R.
Brissot
,
C.
Garzenne
,
C.
Le Brun
,
D.
Lecarpentier
,
E.
Liatard
,
J.-M.
Loiseaux
,
O.
Meplan
,
E.
Merle-Lucotte
,
A.
Nuttin
,
E.
Walle
, and
J.
Wilson
, “
The thorium molten salt reactor: Moving on from the MSBR
,”
Prog. Nucl. Energy
48
,
664
679
(
2006
).
3.
H.
Xu
,
Q.
Liu
,
B.
Leng
,
W.
Zhang
,
X.-X.
Ye
,
F.
Han
,
X.
Li
,
R.
Liu
, and
J.
Wang
, “
Nonuniform corrosion of UNS N10003 alloy induced by trace SO42− in molten FLiNaK salt
,”
Corros. Sci.
192
,
109802
(
2021
).
4.
H.
Huang
,
J.
Gao
,
B.
Radiguet
,
R.
Liu
,
J.
Li
,
G.
Lei
,
Q.
Huang
,
M.
Liu
, and
R.
Xie
, “
Microstructural evolution and hardening of GH3535 alloy under energetic Xe ion irradiation at room temperature and 650 °C
,”
J. Nucl. Mater.
499
,
431
439
(
2018
).
5.
H.
Ullmaier
, “
Helium in fusion materials: High temperature embrittlement
,”
J. Nucl. Mater.
133–134
,
100
104
(
1985
).
6.
S. J.
Zinkle
and
G. S.
Was
, “
Materials challenges in nuclear energy
,”
Acta Mater.
61
,
735
758
(
2013
).
7.
H. F.
Huang
,
J. J.
Li
,
D. H.
Li
,
R. D.
Liu
,
G. H.
Lei
,
Q.
Huang
, and
L.
Yan
, “
TEM, XRD and nanoindentation characterization of Xenon ion irradiation damage in austenitic stainless steels
,”
J. Nucl. Mater.
454
,
168
172
(
2014
).
8.
B.
Kaiser
,
C.
Dethloff
,
E.
Gaganidze
,
D.
Brimbal
,
M.
Payet
,
P.
Trocellier
,
L.
Beck
, and
J.
Aktaa
, “
TEM study and modeling of bubble formation in dual-beam He+/Fe3+ ion irradiated EUROFER97
,”
J. Nucl. Mater.
484
,
59
67
(
2017
).
9.
M. K.
Miller
,
A. A.
Chernobaeva
,
Y. I.
Shtrombakh
,
K. F.
Russell
,
R. K.
Nanstad
,
D. Y.
Erak
, and
O. O.
Zabusov
, “
Evolution of the nanostructure of VVER-1000 RPV materials under neutron irradiation and post irradiation annealing
,”
J. Nucl. Mater.
385
,
615
622
(
2009
).
10.
H. F.
Huang
,
J. J.
Li
,
R. D.
Liu
,
H. C.
Chen
, and
L.
Yan
, “
Temperature effect of Xe ion irradiation to 316 austenitic stainless steel
,”
Acta Metall. Sin.
50
,
1189
1194
(
2014
).
11.
X. L.
Zhou
,
H. F.
Huang
,
R.
Xie
,
G. J.
Thorogood
,
C.
Yang
,
Z. J.
Li
, and
H. J.
Xu
, “
Helium ion irradiation behavior of Ni-1 wt. %SiCNP composite and the effect of ion flux
,”
J. Nucl. Mater.
467
,
848
854
(
2015
).
12.
Z.
Zhu
,
H.
Huang
,
O.
Muránsky
,
J.
Liu
,
Z.
Zhu
, and
Y.
Huang
, “
On the irradiation tolerance of nano-grained Ni-Mo-Cr alloy: 1 MeV He+ irradiation experiment
,”
J. Nucl. Mater.
544
,
152694
(
2021
).
13.
J.
Liu
,
H.
Huang
,
R.
Liu
,
Z.
Zhu
,
Q.
Lei
,
A.
Liu
, and
Y.
Li
, “
In situ TEM observation of the evolution of helium bubbles in Hastelloy N alloy during annealing
,”
J. Nucl. Mater.
537
,
152184
(
2020
).
14.
V.
Castro
,
T.
Leguey
,
M. A.
Monge
,
A.
Murioz
,
R.
Pareja
,
D. R.
Amador
,
J. M.
Tor-ralba
, and
M.
Victoria
, “
Mechanical dispersion of Y2O3 nanoparticles in steel EUROFER 97: Process and optimisation
,”
J. Nucl. Mater.
322
,
228
234
(
2003
).
15.
M. K.
Miller
,
K. F.
Russell
, and
D. T.
Hoelzer
, “
Characterization of precipitates in MA/ODS ferritic alloys
,”
J. Nucl. Mater.
351
,
261
268
(
2006
).
16.
M.
Klimiankou
,
R.
Lindau
, and
A.
Möslang
, “
Direct correlation between morphology of (Fe, Cr)23C6 precipitates and impact behavior of ODS steels
,”
J. Nucl. Mater.
367–370
,
173
178
(
2007
).
17.
C.
Li
,
G.
Lei
,
J.
Liu
,
A.
Liu
,
C. L.
Ren
, and
H.
Huang
, “
A potential candidate structural material for molten salt reactor: ODS nickel-based alloy
,”
J. Mater. Sci. Technol.
109
,
129
139
(
2022
).
18.
C.
Yang
,
M.
Ondrej
,
H.
Zhu
,
T. J.
Gordon
,
H. F.
Huang
, and
X. T.
Zhou
, “
On the origin of strengthening mechanisms in Ni-Mo alloys prepared via powder metallurgy
,”
Mater. Des.
113
,
223
231
(
2017
).
19.
J. F.
Ziegler
,
M. D.
Ziegler
, and
J. P.
Biersack
, “
SRIM—The stopping and range of ions in matter (2010)
,”
Nucl. Instrum. Meth. Phys. Res. Sec. B
268
,
1818
1823
(
2010
).
20.
ASTM E521
, “
Standard practice for neutron radiation damage simulation by charged-particle irradiation
,” in
Annual Book of ASTM Standards, 12.02
(
ASTM International
,
West Conshohocken
,
PA
,
2009
).
21.
H. F.
Huang
,
D. H.
Li
,
J. J.
Li
,
R. D.
Liu
,
G. H.
Lei
,
S. X.
He
,
Q.
Huang
, and
L.
Yan
, “
Nanostructure variations and their effects on mechanical strength of Ni-17Mo-7Cr alloy under xenon ion irradiation
,”
Mater. Trans.
55
,
1243
1247
(
2014
).
22.
H. F.
Huang
,
W.
Zhang
,
M.
De Los Reyes
,
X. L.
Zhou
,
C.
Yang
,
R.
Xie
,
X. T.
Zhou
,
P.
Huai
, and
H. J.
Xu
, “
Mitigation of He embrittlement and swelling in nickel by dispersed SiC nanoparticles
,”
Mater. Des.
90
,
359
363
(
2016
).
23.
N.
Li
,
M.
Nastasi
, and
A.
Misra
, “
Defect structures and hardening mechanisms in high dose helium ion implanted Cu and Cu/Nb multilayer thin films
,”
Int. J. Plasticity
32–33
,
1
16
(
2012
).
24.
J.
Liu
,
H.
Huang
,
A.
Liu
, and
Y.
Li
, “
The effects of post-irradiation isochronous annealing on defects evolution and hardening in Hastelloy N alloy
,”
J. Nucl. Mater.
548
,
152855
(
2021
).
25.
E. H.
Lee
,
Y.
Lee
,
W. C.
Oliver
, and
L. K.
Mansur
, “
Hardness measurements of Ar+-beam treated polyimide by depth-sensing ultra low load indentation
,”
J. Mater. Res.
8
,
377
387
(
1993
).
26.
M.
Fokt
,
G.
Adjanor
, and
T.
Jourdan
, “
A variable-gap model for helium bubbles in nickel
,”
Comp. Mater. Sci.
202
,
110921
(
2022
).
27.
S. E.
Donnelly
, “
The density and pressure of helium in bubbles in implanted metals: A critical review
,”
Radiat. Eff.
90
,
1
47
(
1985
).
28.
H.
Trinkaus
and
B. N.
Singh
, “
Helium accumulation in metals during irradiation where do we stand ?
,”
J. Nucl. Mater.
323
,
229
242
(
2003
).
29.
R. L.
Mills
,
D. H.
Liebenberg
, and
J. C.
Bronson
, “
Equation of state and melting properties of He from measurements to 20 kbar
,”
Phys. Rev. B.
21
,
5137
5148
(
1980
).
30.
N.
Hashimoto
,
S.
Goto
,
S.
Inoue
, and
E.
Suzuki
, “
Annealing effect on microstructural recovery in 316L and A533B
,”
J. Nucl. Mater.
495
,
1
5
(
2017
).
31.
S.-H.
Li
,
J.-T.
Li
, and
W.-Z.
Han
, “
Radiation-induced helium bubbles in metals
,”
Materials
12
,
1036
(
2019
).
32.
P.
Ehrhart
,
A.
Gaber
,
A. A.
Gadalla
,
W.
Jäger
, and
N.
Tsukuda
, “
Microstructural evolution in high energy helium implanted nickel and copper
,”
Nucl. Instrum. Meth. Phys. Res. Sec. B
19–20
,
180
184
(
1987
).
33.
W. D.
Nix
and
H.
Gao
, “
Indentation size effects in crystalline materials: A law for strain gradient plasticity
,”
J. Mech. Solids
46
,
411
425
(
1998
).
34.
P.
Hosemann
,
D.
Kiener
,
Y.
Wang
, and
S. A.
Maloy
, “
Issues to consider using nanoindentation on shallow ion beam irradiated materials
,”
J. Nucl. Mater.
425
,
136
139
(
2012
).
35.
H.
Huang
,
X.
Zhou
,
C.
Li
,
J.
Gao
,
T.
Wei
,
G.
Lei
,
J.
Li
,
L.
Ye
,
Q.
Huang
, and
Z.
Zhu
, “
Temperature dependence of nickel ion irradiation damage in GH3535 alloy weld metal
,”
J. Nucl. Mater.
497
,
108
116
(
2017
).
36.
J.
Liu
,
H.
Huang
,
R.
Liu
,
J.
Gao
,
Z.
Zhu
, and
Y.
Li
, “
Ion irradiation enhanced helium atoms resolution and the related hardening in Hastelloy N alloy
,”
Met. Mater. Int.
27
,
365
375
(
2021
).
37.
S.
Jin
,
L.
Guo
,
Y.
Ren
,
R.
Tang
, and
Y.
Qiao
, “
TEM characterization of self-ion irradiation damage in nickel-base alloy C-276 at elevated temperature
,”
J. Mater. Sci. Technol.
28
,
1039
1045
(
2012
).
You do not currently have access to this content.