We report on nano-patterning with multiply charged argon ions that facilitates the self-assembly of epitaxial Si nanostructures. In particular, we show that the impact sites formed from the dissipation of the incident ion potential energy for () modulate the growth density and growth rate for silicide nanostructures. The observed nanostructure densities were found to vary as for strain-driven, shape transition-type growth, and the observed growth rates far exceeded those obtained under thermal conditions. Relating the growth density to an underlying sputter yield for , we find a dependence on the ion potential energy relatively similar to that observed by others for ions incident on a thermally grown oxide.
REFERENCES
1.
F.
Deng
, R. A.
Johnson
, P. M.
Asbeck
, S. S.
Lau
, W. B.
Dubbelday
, T.
Hsiao
, and J.
Woo
, “Salicidation process using NiSi and its device application
,” J. Appl. Phys.
81
, 8047
(1997
). 2.
H.
Iwai
, T.
Ohguro
, and S.
Ohmi
, “NiSi salicide technology for scaled CMOS
,” Microelectron. Eng.
60
, 157
(2002
). 3.
J.
Tersoff
and R. M.
Tromp
, “Shape transition in growth of strained islands: Spontaneous formation of quantum wires
,” Phys. Rev. Lett.
70
, 2782
(1993
). 4.
E. S.
Srinadhu
, J. E.
Harriss
, and C. E.
Sosolik
, “Shape transitions of Si islands grown on Si(111) and Si(100)
,” Appl. Surf. Sci.
465
, 201
(2019
). 5.
P.
Nurnberger
, H.
Reinhardt
, D.
Rhinow
, R.
Riedel
, S.
Werner
, and N.
Hampp
, “Controlled growth of periodically aligned copper-silicide nanocrystal arrays on silicon directed by laser-induced periodic surface structures (LIPSS)
,” Appl. Surf. Sci.
420
, 70
(2017
).6.
Y. T.
Bie
, J. L.
Yu
, J.
Yang
, W.
Lu
, Y. N.
Nuli
, and J. L.
Wang
, “Porous microspherical silicon composite anode material for lithium ion battery
,” Electrochim. Acta
178
, 65
(2015
). 7.
J. B.
Zhou
, N.
Lin
, Y.
Han
, J.
Zhou
, Y. C.
Zhu
, J.
Du
, and Y. T.
Qian
, “Si@Si core-shell nanoparticles synthesized using a solid-state reaction and their performance as anode materials for lithium ion batteries
,” Nanoscale
7
, 15075
(2015
). 8.
K.
Xu
, Y.
He
, L.
Ben
, H.
Li
, and X.
Huang
, “Enhanced electrochemical performance of Si–Cu–Ti thin films by surface covered with Si nanowires
,” J. Power Sources
281
, 455
(2015
). 9.
F. W.
Yuan
, C. Y.
Wang
, G. A.
Li
, S. H.
Chang
, L. W.
Chu
, L. J.
Chen
, and H. Y.
Tuan
, “Solution-phase synthesis of single-crystal CuSi nanowire arrays on diverse substrates with dual functions as high-performance field emitters and efficient anti-reflective layers
,” Nanoscale
5
, 9875
(2013
). 10.
Y.
Cechal
, J.
Polcak
, M.
Kolibal
, P.
Babor
, and T.
Sikola
, “Formation of copper islands on a native surface at elevated temperatures
,” Appl. Surf. Sci.
256
, 3636
(2010
).11.
N.
Benouattas
, A.
Mosser
, D.
Raiser
, J.
Faerber
, and A.
Bouabellou
, “Behaviour of copper atoms in annealed /Si systems
,” Appl. Surf. Sci.
153
, 79
(2000
). 12.
S.
Li
, H.
Cai
, C. L.
Gan
, J.
Guo
, Z.
Dong
, and J.
Ma
, “Controlled synthesis of copper-silicide nanostructures
,” Cryst. Growth Des.
10
, 2983
(2010
). 13.
R.
Lake
, J.
Pomeroy
, and C.
Sosolik
, “Energy dissipation of highly charged ions on Al oxide films
,” J. Phys.: Condens. Matter
22
, 084008
(2010
).14.
J. M.
Pomeroy
, R. E.
Lake
, and C. E.
Sosolik
, “Highly charged ion interactions with thin insulating films
,” Nucl. Instrum. Methods Phys. Res. Sect. B
269
, 1238
(2011
). 15.
R. E.
Lake
, J. M.
Pomeroy
, H.
Grube
, and C. E.
Sosolik
, “Charge state dependent energy deposition by ion impact
,” Phys. Rev. Lett.
107
, 063202
(2011
). 16.
P.
Karmakar
, S.
Bhattacharjee
, V.
Naik
, A.
Sinha
, and A.
Chakrabarti
, “Coulomb explosion sputtering of selectively oxidized Si
,” J. Phys.: Condens. Matter
22
, 175005
(2010
).17.
W.
Arnoldbik
, N.
Tomozeiu
, and F.
Habraken
, “Electronic sputtering of thin films by meV heavy ions
,” Nucl. Instrum. Methods Phys. Res. Sect. B
203
, 151
(2003
). 18.
M.
Sporn
, G.
Libiseller
, T.
Neidhart
, M.
Schmid
, F.
Aumayr
, H.
Winter
, and P.
Varga
, “Potential sputtering of clean by slow highly charged ions
,” Phys. Rev. Lett.
79
, 945
(1997
). 19.
R.
Shyam
, D. D.
Kulkarni
, D. A.
Field
, E. S.
Srinadhu
, D. B.
Cutshall
, W. R.
Harrell
, J. E.
Harriss
, and C. E.
Sosolik
, “First multicharged ion irradiation results from the CUEBIT facility at Clemson University
,” AIP Conf. Proc.
1640
, 129
(2015
).20.
D. D.
Kulkarni
, R. E.
Shyam
, D. B.
Cutshall
, D. A.
Field
, J. E.
Harriss
, W. R.
Harrell
, and C. E.
Sosolik
, “Tracking subsurface ion radiation damage with metal–oxide–semiconductor device encapsulation
,” J. Mater. Res.
30
, 1413
–1421
(2015
). 21.
L. J.
Chen
, J. J.
Chu
, W.
Lur
, H. F.
Hsu
, and T. C.
Lee
, “Recent developments in the epitaxial growth of transition metal silicides on silicon,” in Heterostructures on Silicon: One Step Further with Silicon, NATO ASI Series (Series E: Applied Sciences), edited by Y. Nissim and E. Rosencher (Springer, Dordrecht, 1989), Vol. 160, pp. 231–238.22.
H.
Hibino
, M.
Uematsu
, and Y.
Watanabe
, “Void growth during thermal decomposition of silicon oxide layers studied by low-energy electron microscopy
,” J. Appl. Phys.
100
, 113519
(2006
). 23.
M.
Tona
, S.
Takahashi
, K.
Nagata
, N.
Yoshiyasu
, C.
Yamada
, N.
Nakamura
, S.
Ohtani
, and M.
Sakurai
, “Coulomb explosion potential sputtering induced by slow highly charged ion impact
,” Appl. Phys. Lett.
87
, 224102
(2005
). 24.
T.
Mizutani
, “Preferential sputtering of oxygen from by low-energy ion beam and neutral beam bombardment
,” Jpn. J. Appl. Phys.
30
, L628
(1991
). 25.
M.
Sporn
, G.
Libiseller
, T.
Neidhart
, M.
Schmid
, F.
Aumayr
, H.
Winter
, P.
Varga
, M.
Grether
, D.
Niemann
, and N.
Stolterfoht
, “Potential sputtering of clean by slow highly charged ions
,” Phys. Rev. Lett.
79
, 945
(1997
). © 2022 Author(s). Published under an exclusive license by AIP Publishing.
2022
Author(s)
You do not currently have access to this content.