We report on nano-patterning with multiply charged argon ions that facilitates the self-assembly of epitaxial Cu3Si nanostructures. In particular, we show that the impact sites formed from the dissipation of the incident ion potential energy for Arq+ (q=1,4,8) modulate the growth density and growth rate for silicide nanostructures. The observed nanostructure densities were found to vary as q0.9 for strain-driven, shape transition-type growth, and the observed growth rates far exceeded those obtained under thermal conditions. Relating the growth density to an underlying sputter yield for SiO2, we find a dependence on the ion potential energy relatively similar to that observed by others for Iq+ ions incident on a thermally grown oxide.

1.
F.
Deng
,
R. A.
Johnson
,
P. M.
Asbeck
,
S. S.
Lau
,
W. B.
Dubbelday
,
T.
Hsiao
, and
J.
Woo
, “
Salicidation process using NiSi and its device application
,”
J. Appl. Phys.
81
,
8047
(
1997
).
2.
H.
Iwai
,
T.
Ohguro
, and
S.
Ohmi
, “
NiSi salicide technology for scaled CMOS
,”
Microelectron. Eng.
60
,
157
(
2002
).
3.
J.
Tersoff
and
R. M.
Tromp
, “
Shape transition in growth of strained islands: Spontaneous formation of quantum wires
,”
Phys. Rev. Lett.
70
,
2782
(
1993
).
4.
E. S.
Srinadhu
,
J. E.
Harriss
, and
C. E.
Sosolik
, “
Shape transitions of Cu3Si islands grown on Si(111) and Si(100)
,”
Appl. Surf. Sci.
465
,
201
(
2019
).
5.
P.
Nurnberger
,
H.
Reinhardt
,
D.
Rhinow
,
R.
Riedel
,
S.
Werner
, and
N.
Hampp
, “
Controlled growth of periodically aligned copper-silicide nanocrystal arrays on silicon directed by laser-induced periodic surface structures (LIPSS)
,”
Appl. Surf. Sci.
420
,
70
(
2017
).
6.
Y. T.
Bie
,
J. L.
Yu
,
J.
Yang
,
W.
Lu
,
Y. N.
Nuli
, and
J. L.
Wang
, “
Porous microspherical silicon composite anode material for lithium ion battery
,”
Electrochim. Acta
178
,
65
(
2015
).
7.
J. B.
Zhou
,
N.
Lin
,
Y.
Han
,
J.
Zhou
,
Y. C.
Zhu
,
J.
Du
, and
Y. T.
Qian
, “
Cu3Si@Si core-shell nanoparticles synthesized using a solid-state reaction and their performance as anode materials for lithium ion batteries
,”
Nanoscale
7
,
15075
(
2015
).
8.
K.
Xu
,
Y.
He
,
L.
Ben
,
H.
Li
, and
X.
Huang
, “
Enhanced electrochemical performance of Si–Cu–Ti thin films by surface covered with Cu3Si nanowires
,”
J. Power Sources
281
,
455
(
2015
).
9.
F. W.
Yuan
,
C. Y.
Wang
,
G. A.
Li
,
S. H.
Chang
,
L. W.
Chu
,
L. J.
Chen
, and
H. Y.
Tuan
, “
Solution-phase synthesis of single-crystal Cu3Si nanowire arrays on diverse substrates with dual functions as high-performance field emitters and efficient anti-reflective layers
,”
Nanoscale
5
,
9875
(
2013
).
10.
Y.
Cechal
,
J.
Polcak
,
M.
Kolibal
,
P.
Babor
, and
T.
Sikola
, “
Formation of copper islands on a native SiO2 surface at elevated temperatures
,”
Appl. Surf. Sci.
256
,
3636
(
2010
).
11.
N.
Benouattas
,
A.
Mosser
,
D.
Raiser
,
J.
Faerber
, and
A.
Bouabellou
, “
Behaviour of copper atoms in annealed Cu/SiOx/Si systems
,”
Appl. Surf. Sci.
153
,
79
(
2000
).
12.
S.
Li
,
H.
Cai
,
C. L.
Gan
,
J.
Guo
,
Z.
Dong
, and
J.
Ma
, “
Controlled synthesis of copper-silicide nanostructures
,”
Cryst. Growth Des.
10
,
2983
(
2010
).
13.
R.
Lake
,
J.
Pomeroy
, and
C.
Sosolik
, “
Energy dissipation of highly charged ions on Al oxide films
,”
J. Phys.: Condens. Matter
22
,
084008
(
2010
).
14.
J. M.
Pomeroy
,
R. E.
Lake
, and
C. E.
Sosolik
, “
Highly charged ion interactions with thin insulating films
,”
Nucl. Instrum. Methods Phys. Res. Sect. B
269
,
1238
(
2011
).
15.
R. E.
Lake
,
J. M.
Pomeroy
,
H.
Grube
, and
C. E.
Sosolik
, “
Charge state dependent energy deposition by ion impact
,”
Phys. Rev. Lett.
107
,
063202
(
2011
).
16.
P.
Karmakar
,
S.
Bhattacharjee
,
V.
Naik
,
A.
Sinha
, and
A.
Chakrabarti
, “
Coulomb explosion sputtering of selectively oxidized Si
,”
J. Phys.: Condens. Matter
22
,
175005
(
2010
).
17.
W.
Arnoldbik
,
N.
Tomozeiu
, and
F.
Habraken
, “
Electronic sputtering of thin SiO2 films by meV heavy ions
,”
Nucl. Instrum. Methods Phys. Res. Sect. B
203
,
151
(
2003
).
18.
M.
Sporn
,
G.
Libiseller
,
T.
Neidhart
,
M.
Schmid
,
F.
Aumayr
,
H.
Winter
, and
P.
Varga
, “
Potential sputtering of clean SiO2 by slow highly charged ions
,”
Phys. Rev. Lett.
79
,
945
(
1997
).
19.
R.
Shyam
,
D. D.
Kulkarni
,
D. A.
Field
,
E. S.
Srinadhu
,
D. B.
Cutshall
,
W. R.
Harrell
,
J. E.
Harriss
, and
C. E.
Sosolik
, “
First multicharged ion irradiation results from the CUEBIT facility at Clemson University
,”
AIP Conf. Proc.
1640
,
129
(
2015
).
20.
D. D.
Kulkarni
,
R. E.
Shyam
,
D. B.
Cutshall
,
D. A.
Field
,
J. E.
Harriss
,
W. R.
Harrell
, and
C. E.
Sosolik
, “
Tracking subsurface ion radiation damage with metal–oxide–semiconductor device encapsulation
,”
J. Mater. Res.
30
,
1413
1421
(
2015
).
21.
L. J.
Chen
,
J. J.
Chu
,
W.
Lur
,
H. F.
Hsu
, and
T. C.
Lee
, “Recent developments in the epitaxial growth of transition metal silicides on silicon,” in Heterostructures on Silicon: One Step Further with Silicon, NATO ASI Series (Series E: Applied Sciences), edited by Y. Nissim and E. Rosencher (Springer, Dordrecht, 1989), Vol. 160, pp. 231–238.
22.
H.
Hibino
,
M.
Uematsu
, and
Y.
Watanabe
, “
Void growth during thermal decomposition of silicon oxide layers studied by low-energy electron microscopy
,”
J. Appl. Phys.
100
,
113519
(
2006
).
23.
M.
Tona
,
S.
Takahashi
,
K.
Nagata
,
N.
Yoshiyasu
,
C.
Yamada
,
N.
Nakamura
,
S.
Ohtani
, and
M.
Sakurai
, “
Coulomb explosion potential sputtering induced by slow highly charged ion impact
,”
Appl. Phys. Lett.
87
,
224102
(
2005
).
24.
T.
Mizutani
, “
Preferential sputtering of oxygen from SiO2 by low-energy ion beam and neutral beam bombardment
,”
Jpn. J. Appl. Phys.
30
,
L628
(
1991
).
25.
M.
Sporn
,
G.
Libiseller
,
T.
Neidhart
,
M.
Schmid
,
F.
Aumayr
,
H.
Winter
,
P.
Varga
,
M.
Grether
,
D.
Niemann
, and
N.
Stolterfoht
, “
Potential sputtering of clean SiO2 by slow highly charged ions
,”
Phys. Rev. Lett.
79
,
945
(
1997
).
You do not currently have access to this content.