Using a particle swarm optimization algorithm (a population-based stochastic optimization technique) combined with 3D finite-difference time-domain simulations, we inverse design periodic arrays of metallic nanoparticles on indium-tin-oxide electrodes and nanoholes in metallic thin films working as electrodes in P3HT (Poly(3-hexylthiophene-2,5-diyl)):PCBM ([6,6]-Phenyl C61 butyric acid methyl ester) organic solar cells to achieve the maximum short-circuit currents (Jsc). Nanohole-array electrodes have large optical losses, leading to a net reduction of Jsc compared to a reference solar cell. On the other hand, nanoparticle arrays can lead to a significant enhancement of Jsc of up to 20%. Detailed simulations show that this enhancement is caused by the grating coupling of the incident light to surface plasmon polaritons at the interface of the metal electrode and the hole transport layer, leading to the enhancement of the electromagnetic field in the organic blend.

1.
M. C.
Scharber
and
N. S.
Sariciftci
, “
Efficiency of bulk-heterojunction organic solar cells
,”
Prog. Polym. Sci.
38
,
1929
1940
(
2013
).
2.
H.
Hoppe
and
N. S.
Sariciftci
, “
Organic solar cells: An overview
,”
J. Mater. Res.
19
,
1924
1945
(
2004
).
3.
A.
Uddin
, “Organic solar cells,” in Comprehensive Guide on Organic and Inorganic Solar Cells (Elsevier, 2022), pp. 25–55.
4.
H.
Lee
,
C.
Park
,
D. H.
Sin
,
J. H.
Park
, and
K.
Cho
, “
Recent advances in morphology optimization for organic photovoltaics
,”
Adv. Mater.
30
,
1800453
(
2018
).
5.
P. E.
Shaw
,
A.
Ruseckas
, and
I. D. W.
Samuel
, “
Exciton diffusion measurements in poly(3-hexylthiophene)
,”
Adv. Mater.
20
,
3516
3520
(
2008
).
6.
A. J.
Moulé
,
J. B.
Bonekamp
, and
K.
Meerholz
, “
The effect of active layer thickness and composition on the performance of bulk-heterojunction solar cells
,”
J. Appl. Phys.
100
,
94503
(
2006
).
7.
F.
Cheng
,
G.
Fang
,
X.
Fan
,
N.
Liu
,
N.
Sun
,
P.
Qin
,
Q.
Zheng
,
J.
Wan
, and
X.
Zhao
, “
Enhancing the short-circuit current and efficiency of organic solar cells using MoO3 and CuPc as buffer layers
,”
Sol. Energy Mater. Sol. Cells
95
,
2914
2919
(
2011
).
8.
F.
Li
,
L.
Kou
,
W.
Chen
,
C.
Wu
, and
T.
Guo
, “
Enhancing the short-circuit current and power conversion efficiency of polymer solar cells with graphene quantum dots derived from double-walled carbon nanotubes
,”
NPG Asia Mater.
5
,
e60
(
2013
).
9.
H.-Y.
Chen
,
J.
Hou
,
S.
Zhang
,
Y.
Liang
,
G.
Yang
,
Y.
Yang
,
L.
Yu
,
Y.
Wu
, and
G.
Li
, “
Polymer solar cells with enhanced open-circuit voltage and efficiency
,”
Nat. Photonics
3
,
649
653
(
2009
).
10.
D.
Di Nuzzo
,
G.-J. A.
Wetzelaer
,
R. K.
Bouwer
,
V. S.
Gevaerts
,
S. C.
Meskers
,
J. C.
Hummelen
,
P. W.
Blom
, and
R. A.
Janssen
, “
Simultaneous open-circuit voltage enhancement and short-circuit current loss in polymer: Fullerene solar cells correlated by reduced quantum efficiency for photoinduced electron transfer
,”
Adv. Energy Mater.
3
,
85
94
(
2013
).
11.
N. K.
Elumalai
and
A.
Uddin
, “
Open circuit voltage of organic solar cells: An in-depth review
,”
Energy Environ. Sci.
9
,
391
410
(
2016
).
12.
J.
Yuan
,
Y.
Zhang
,
L.
Zhou
,
G.
Zhang
,
H.-L.
Yip
,
T.-K.
Lau
,
X.
Lu
,
C.
Zhu
,
H.
Peng
,
P. A.
Johnson
, and
M.
Leclerc
, “
Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core
,”
Joule
3
,
1140
1151
(
2019
).
13.
A.
Raman
,
Z.
Yu
, and
S.
Fan
, “
Dielectric nanostructures for broadband light trapping in organic solar cells
,”
Opt. Express
19
,
19015
19026
(
2011
).
14.
H.-P.
Wang
,
D.-H.
Lien
,
M.-L.
Tsai
,
C.-A.
Lin
,
H.-C.
Chang
,
K.-Y.
Lai
, and
J.-H.
He
, “
Photon management in nanostructured solar cells
,”
J. Mater. Chem. C
2
,
3144
3171
(
2014
).
15.
B.
Lipovšek
,
A.
Čampa
,
F.
Guo
,
C. J.
Brabec
,
K.
Forberich
,
J.
Krč
, and
M.
Topič
, “
Detailed optical modelling and light-management of thin-film organic solar cells with consideration of small-area effects
,”
Opt. Express
25
,
A176
A190
(
2017
).
16.
J.-L.
Wu
,
F.-C.
Chen
,
Y.-S.
Hsiao
,
F.-C.
Chien
,
P.
Chen
,
C.-H.
Kuo
,
M. H.
Huang
, and
C.-S.
Hsu
, “
Surface plasmonic effects of metallic nanoparticles on the performance of polymer bulk heterojunction solar cells
,”
ACS Nano
5
,
959
967
(
2011
).
17.
L.
Qiao
,
D.
Wang
,
L.
Zuo
,
Y.
Ye
,
J.
Qian
,
H.
Chen
, and
S.
He
, “
Localized surface plasmon resonance enhanced organic solar cell with gold nanospheres
,”
Appl. Energy
88
,
848
852
(
2011
).
18.
N. C.
Lindquist
,
W. A.
Luhman
,
S.-H.
Oh
, and
R. J.
Holmes
, “
Plasmonic nanocavity arrays for enhanced efficiency in organic photovoltaic cells
,”
Appl. Phys. Lett.
93
,
350
(
2008
).
19.
W. J.
Dong
,
H. K.
Yu
, and
J.-L.
Lee
, “
Abnormal dewetting of Ag layer on three-dimensional ITO branches to form spatial plasmonic nanoparticles for organic solar cells
,”
Sci. Rep.
10
,
12819
(
2020
).
20.
K.
Yao
,
H.
Zhong
,
Z.
Liu
,
M.
Xiong
,
S.
Leng
,
J.
Zhang
,
Y.-X.
Xu
,
W.
Wang
,
L.
Zhou
,
H.
Huang
, and
A. K. Y.
Jen
, “
Plasmonic metal nanoparticles with core–bishell structure for high-performance organic and perovskite solar cells
,”
ACS Nano
13
,
5397
5409
(
2019
).
21.
C.
Stelling
,
C. R.
Singh
,
M.
Karg
,
T. A.
König
,
M.
Thelakkat
, and
M.
Retsch
, “
Plasmonic nanomeshes: Their ambivalent role as transparent electrodes in organic solar cells
,”
Sci. Rep.
7
,
42530
(
2017
).
22.
H.
Shen
,
P.
Bienstman
, and
B.
Maes
, “
Plasmonic absorption enhancement in organic solar cells with thin active layers
,”
J. Appl. Phys.
106
,
073109
(
2009
).
23.
J. R.
Tumbleston
,
D.-H.
Ko
,
E. T.
Samulski
, and
R.
Lopez
, “
Absorption and quasiguided mode analysis of organic solar cells with photonic crystal photoactive layers
,”
Opt. Express
17
,
7670
7681
(
2009
).
24.
D. H.
Wang
,
K. H.
Park
,
J. H.
Seo
,
J.
Seifter
,
J. H.
Jeon
,
J. K.
Kim
,
J. H.
Park
,
O. O.
Park
, and
A. J.
Heeger
, “
Enhanced power conversion efficiency in PCDTBT/PC70BM bulk heterojunction photovoltaic devices with embedded silver nanoparticle clusters
,”
Adv. Energy Mater.
1
,
766
770
(
2011
).
25.
X.
Li
,
W. C. H.
Choy
,
H.
Lu
,
W. E.
Sha
, and
A. H. P.
Ho
, “
Efficiency enhancement of organic solar cells by using shape-dependent broadband plasmonic absorption in metallic nanoparticles
,”
Adv. Funct. Mater.
23
,
2728
2735
(
2013
).
26.
L.
Lu
,
Z.
Luo
,
T.
Xu
, and
L.
Yu
, “
Cooperative plasmonic effect of Ag and Au nanoparticles on enhancing performance of polymer solar cells
,”
Nano Lett.
13
,
59
64
(
2013
).
27.
J.
Zhu
,
M.
Xue
,
H.
Shen
,
Z.
Wu
,
S.
Kim
,
J.-J.
Ho
,
A.
Hassani-Afshar
,
B.
Zeng
, and
K. L.
Wang
, “
Plasmonic effects for light concentration in organic photovoltaic thin films induced by hexagonal periodic metallic nanospheres
,”
Appl. Phys. Lett.
98
,
151110
(
2011
).
28.
J.
van de Groep
,
D.
Gupta
,
M. A.
Verschuuren
,
M. M.
Wienk
,
R. A.
Janssen
, and
A.
Polman
, “
Large-area soft-imprinted nanowire networks as light trapping transparent conductors
,”
Sci. Rep.
5
,
11414
(
2015
).
29.
Q. G.
Du
,
H.
Ren
,
L.
Wu
,
P.
Bai
,
C. E.
Png
,
X. W.
Sun
,
C. H.
Kam
, and
C. M.
de Sterke
, “
Light absorption mechanism in organic solar cells with hexagonal lattice nanohole aluminum transparent electrodes
,”
J. Opt.
17
,
085901
(
2015
).
30.
J.
Robinson
and
Y.
Rahmat-Samii
, “
Particle swarm optimization in electromagnetics
,”
IEEE Trans. Antennas Propag.
52
,
397
407
(
2004
).
31.
C.
Forestiere
,
M.
Donelli
,
G. F.
Walsh
,
E.
Zeni
,
G.
Miano
, and
L.
Dal Negro
, “
Particle-swarm optimization of broadband nanoplasmonic arrays
,”
Opt. Lett.
35
,
133
135
(
2010
).
32.
M.
Notarianni
,
K.
Vernon
,
A.
Chou
,
M.
Aljada
,
J.
Liu
, and
N.
Motta
, “
Plasmonic effect of gold nanoparticles in organic solar cells
,”
Sol. Energy
106
,
23
37
(
2014
).
33.
C. C.
Wang
,
W. C.
Choy
,
C.
Duan
,
D. D.
Fung
,
E.
Wei
,
F.-X.
Xie
,
F.
Huang
, and
Y.
Cao
, “
Optical and electrical effects of gold nanoparticles in the active layer of polymer solar cells
,”
J. Mater. Chem.
22
,
1206
1211
(
2012
).
34.
B.
Wu
,
X.
Wu
,
C.
Guan
,
K.
Fai Tai
,
E. K. L.
Yeow
,
H.
Jin Fan
,
N.
Mathews
, and
T. C.
Sum
, “
Uncovering loss mechanisms in silver nanoparticle-blended plasmonic organic solar cells
,”
Nat. Commun.
4
,
2004
(
2013
).
35.
N.
Kalfagiannis
,
P.
Karagiannidis
,
C.
Pitsalidis
,
N.
Panagiotopoulos
,
C.
Gravalidis
,
S.
Kassavetis
,
P.
Patsalas
, and
S.
Logothetidis
, “
Plasmonic silver nanoparticles for improved organic solar cells
,”
Sol. Energy Mater. Sol. Cells
104
,
165
174
(
2012
).
36.
M.
Xue
,
L.
Li
,
B. J.
Tremolet de Villers
,
H.
Shen
,
J.
Zhu
,
Z.
Yu
,
A. Z.
Stieg
,
Q.
Pei
,
B. J.
Schwartz
, and
K. L.
Wang
, “
Charge-carrier dynamics in hybrid plasmonic organic solar cells with Ag nanoparticles
,”
Appl. Phys. Lett.
98
,
119
(
2011
).
37.
V.
Kochergin
,
L.
Neely
,
C.-Y.
Jao
, and
H. D.
Robinson
, “
Aluminum plasmonic nanostructures for improved absorption in organic photovoltaic devices
,”
Appl. Phys. Lett.
98
,
73
(
2011
).
38.
M.
Sygletou
,
G.
Kakavelakis
,
B.
Paci
,
A.
Generosi
,
E.
Kymakis
, and
E.
Stratakis
, “
Enhanced stability of aluminum nanoparticle-doped organic solar cells
,”
ACS Appl. Mater. Interfaces
7
,
17756
17764
(
2015
).
39.
S.
Vedraine
,
P.
Torchio
,
D.
Duché
,
F.
Flory
,
J.-J.
Simon
,
J.
Le Rouzo
, and
L.
Escoubas
, “
Intrinsic absorption of plasmonic structures for organic solar cells
,”
Sol. Energy Mater. Sol. Cells
95
,
S57
S64
(
2011
).
40.
P. T.
Dang
,
T. K.
Nguyen
, and
K. Q.
Le
, “
Revisited design optimization of metallic gratings for plasmonic light-trapping enhancement in thin organic solar cells
,”
Opt. Commun.
382
,
241
245
(
2017
).
41.
M.
Kaya
and
S.
Hajimirza
, “
Application of artificial neural network for accelerated optimization of ultra thin organic solar cells
,”
Sol. Energy
165
,
159
166
(
2018
).
42.
P.
Bai
,
S.
Ter Huurne
,
E.
van Heijst
,
S.
Murai
, and
J.
Gómez Rivas
, “
Evolutionary optimization of light-matter coupling in open plasmonic cavities
,”
J. Chem. Phys.
154
,
134110
(
2021
).
43.
T. W.
Ebbesen
,
H. J.
Lezec
,
H.
Ghaemi
,
T.
Thio
, and
P. A.
Wolff
, “
Extraordinary optical transmission through sub-wavelength hole arrays
,”
Nature
391
,
667
669
(
1998
).
44.
R. W.
Wood
, “
XLII. On a remarkable case of uneven distribution of light in a diffraction grating spectrum
,”
Lond. Edinb. Dubl. Philos. Mag. J. Sci.
4
,
396
402
(
1902
).

Supplementary Material

You do not currently have access to this content.