The micrometer-sized nickelate–titanate heterojunctions with LaNiO3 (LNO) electrode have been fabricated to investigate the dominant current transport mechanisms under positive and negative bias. The LNO/SmNiO3 (SNO)/Nb:SrTiO3 (NSTO) heterojunction exhibits a highly rectifying feature with a very low leakage in a broad temperature region (from 200 to 425 K), which is attributed to the formation of a Schottky-like barrier at the SNO/NSTO interface. In addition, it is found that the trap defects (i.e., oxygen vacancies) play an essential role in determining the current density (J)voltage (V) characteristics irrespective of the voltage polarity. The leakage current at low electric fields (<0.25 MV/cm) is dominated by temperature-enhanced trap assisted tunneling process, which is caused by the interface oxygen vacancy induced states. Further analysis suggests that, at high fields (>1.2 MV/cm), the leakage is ascribed to the bulk-limited field enhanced thermal ionization of trapped carriers in the SNO film (i.e., Poole–Frenkel emission). Specially, the oxygen vacancy redistribution near the SNO/NSTO heterointerface driven by a high temperature (425 K) or high electrical field (>3.8 MV/cm) stress is emphasized to account for the transition from the Schottky contact limited to bulk-limited conduction mechanism (i.e., space charge limited conduction). This work will benefit the further analysis of the resistive switching phenomena in nickelate-based devices, showing a potential for nonvolatile memory applications.

1.
A. D.
Caviglia
,
S.
Gariglio
,
N.
Reyren
,
D.
Jaccard
,
T.
Schneider
,
M.
Gabay
,
S.
Thiel
,
G.
Hammerl
,
J.
Mannhart
, and
J.-M.
Triscone
,
Nature
456
,
624
(
2008
).
2.
A.
Ruotolo
,
C. Y.
Lam
,
W. F.
Cheng
,
K. H.
Wong
, and
C. W.
Leung
,
Phys. Rev. B
76
,
075122
(
2007
).
3.
H.
Tanaka
,
J.
Zhang
, and
T.
Kawai
,
Phys. Rev. Lett.
88
,
027204
(
2002
).
4.
F. A.
Cuellar
,
G.
Sanchez-Santolino
,
M.
Varela
,
M.
Clement
,
E.
Iborra
,
Z.
Sefrioui
,
J.
Santamaria
, and
C.
Leon
,
Phys. Rev. B
85
,
245122
(
2012
).
5.
T.
Susaki
,
N.
Nakagawa
, and
H. Y.
Hwang
,
Waseda Commer. Rev.
160
,
733
(
2006
).
6.
T.
Susaki
,
N.
Nakagawa
, and
H. Y.
Hwang
,
Phys. Rev. B
75
,
104409
(
2007
).
7.
S.
Lee
,
R.
Chen
, and
L.
Balents
,
Phys. Rev. Lett.
106
,
016405
(
2011
).
9.
S.
Catalano
,
M.
Gibert
,
J.
Fowlie
,
J.
Iniguez
,
J. M.
Triscone
, and
J.
Kreisel
,
Rep. Prog. Phys.
81
,
046501
(
2018
).
10.
X.
Liu
,
M.
Kotiuga
,
H. S.
Kim
,
A. T.
N’Diaye
,
Y.
Choi
,
Q.
Zhang
,
Y.
Cao
,
M.
Kareev
,
F.
Wen
,
B.
Pal
,
J. W.
Freeland
,
L.
Gu
,
D.
Haskel
,
P.
Shafer
,
E.
Arenholz
,
K.
Haule
,
D.
Vanderbilt
,
K. M.
Rabe
, and
J.
Chakhalian
,
Proc. Natl. Acad. Sci. USA
116
,
19863
(
2019
).
11.
L.
Chang
,
L.
Wang
,
L.
You
,
Y.
Zhou
,
L.
Fang
,
S. W.
Wang
, and
J. L.
Wang
,
J. Phys. D: Appl. Phys.
49
,
44LT02
(
2016
).
12.
J.
Chen
,
H.
Hu
,
J.
Wang
,
C.
Liu
,
X.
Liu
,
Z.
Li
, and
N.
Chen
,
ACS Appl. Mater. Interfaces
11
,
34128
(
2019
).
13.
Y. D.
Liu
,
C. Z.
Hu
,
J. J.
Wang
,
N.
Zhong
,
P. H.
Xiang
, and
C. G.
Duan
,
J. Mater. Chem. C
8
,
5815
(
2020
).
14.
X.
Chen
,
X.
Zhang
,
M. A.
Koten
,
H.
Chen
,
Z.
Xiao
,
L.
Zhang
,
J. E.
Shield
,
P. A.
Dowben
, and
X.
Hong
,
Adv. Mater.
29
,
1701385
(
2017
).
15.
J.
Shi
,
S. D.
Ha
,
Y.
Zhou
,
F.
Schoofs
, and
S.
Ramanathan
,
Nat. Commun.
4
,
2676
(
2013
).
16.
L.
Wang
,
Q. H.
Zhang
,
L.
Chang
,
L.
You
,
X.
He
,
K. J.
Jin
,
L.
Gu
,
H. Z.
Guo
,
C.
Ge
,
Y. Q.
Feng
, and
J. L.
Wang
,
Adv. Electron. Mater.
3
,
1700321
(
2017
).
17.
L.
Chang
,
L.
Wang
,
L.
You
,
Z.
Yang
,
A.
Abdelsamie
,
Q.
Zhang
,
Y.
Zhou
,
L.
Gu
,
S. A.
Chambers
, and
J.
Wang
,
ACS Appl. Mater. Interfaces
11
,
16191
(
2019
).
18.
P.
Han
,
K. J.
Jin
,
H. B.
Lu
,
Q. L.
Zhou
,
Y. L.
Zhou
, and
G. Z.
Yang
,
Appl. Phys. Lett.
91
,
182102
(
2007
).
19.
M.
Nakamura
,
A.
Sawa
,
J.
Fujioka
,
M.
Kawasaki
, and
Y.
Tokura
,
Phys. Rev. B
82
,
201101
(
2010
).
20.
M.
Kotiuga
,
Z.
Zhang
,
J.
Li
,
F.
Rodolakis
,
H.
Zhou
,
R.
Sutarto
,
F.
He
,
Q.
Wang
,
Y.
Sun
,
Y.
Wang
,
N. A.
Aghamiri
,
S. B.
Hancock
,
L. P.
Rokhinson
,
D. P.
Landau
,
Y.
Abate
,
J. W.
Freeland
,
R.
Comin
,
S.
Ramanathan
, and
K. M.
Rabe
,
Proc. Natl. Acad. Sci. USA
116
,
21992
(
2019
).
21.
J.
Karthik
,
A. R.
Damodaran
, and
L. W.
Martin
,
Adv. Mater.
24
,
1610
(
2012
).
22.
Y.
Zhang
,
M.
Liu
,
C.
Ma
,
L.
Lu
, and
C. Y.
Han
,
J. Mater. Chem. C
10
,
7707
(
2022
).
23.
J. A.
Alonso
,
J. L.
García-Muñoz
,
M. T.
Fernández-Díaz
,
M. A. G.
Aranda
,
M. J.
Martínez-Lope
, and
M. T.
Casais
,
Phys. Rev. Lett.
82
,
3871
(
1999
).
24.
L.
Wang
,
L.
Chang
,
X. M.
Yin
,
L.
You
,
J. L.
Zhao
,
H. Z.
Guo
,
K. J.
Jin
,
K.
Ibrahim
,
J. U.
Wang
,
A.
Rusydi
, and
J. L.
Wang
,
Appl. Phys. Lett.
110
,
043504
(
2017
).
25.
L.
Wang
,
K. A.
Stoerzinger
,
L.
Chang
,
J.
Zhao
,
Y.
Li
,
C. S.
Tang
,
X.
Yin
,
M. E.
Bowden
,
Z.
Yang
,
H.
Guo
,
L.
You
,
R.
Guo
,
J.
Wang
,
K.
Ibrahim
,
J.
Chen
,
A.
Rusydi
,
J.
Wang
,
S. A.
Chambers
, and
Y.
Du
,
Adv. Funct. Mater.
28
,
1803712
(
2018
).
26.
S.
Yu
,
X.
Guan
, and
H. S. P.
Wong
,
Appl. Phys. Lett.
99
,
063507
(
2011
).
27.
A. H.
Alshehri
,
A.
Shahin
,
K.
Mistry
,
K. H.
Ibrahim
,
M.
Yavuz
, and
K. P.
Musselman
,
Adv. Electron. Mater.
7
,
2100467
(
2021
).
28.
M. P.
Houng
,
Y. H.
Wang
, and
W. J.
Chang
,
J. Appl. Phys.
86
,
1488
(
1999
).
29.
S. A.
Mojarad
,
K. S. K.
Kwa
,
J. P.
Goss
,
Z.
Zhou
,
N. K.
Ponon
,
D. J. R.
Appleby
,
R. A. S.
Al-Hamadany
, and
A.
O’Neill
,
J. Appl. Phys.
111
,
014503
(
2012
).
30.
S. D.
Ha
,
R.
Jaramillo
,
D. M.
Silevitch
,
F.
Schoofs
,
K.
Kerman
,
J. D.
Baniecki
, and
S.
Ramanathan
,
Phys. Rev. B
87
,
125150
(
2013
).
31.
S.
Sze
and
K. K.
Ng
,
Physics of Semiconductor Devices
, 3rd ed. (Wiley-Interscience,
2006
).
32.
S. K.
Cheung
and
N. W.
Cheung
,
Appl. Phys. Lett.
49
,
85
(
1986
).
33.
S. D.
Ha
,
G. H.
Aydogdu
, and
S.
Ramanathan
,
J. Appl. Phys.
110
,
094102
(
2011
).
34.
G.
Saucke
,
J.
Norpoth
,
C.
Jooss
,
D.
Su
, and
Y.
Zhu
,
Phys. Rev. B
85
,
165315
(
2012
).
35.
S.
Pan
,
S.
Ding
,
Y.
Huang
,
Y.
Huang
,
D. W.
Zhang
,
L.
Wang
, and
R.
Liu
,
J. Appl. Phys.
102
,
073706
(
2007
).
36.
C.
Chaneliere
,
J. L.
Autran
, and
R. A. B.
Devine
,
J. Appl. Phys.
86
,
480
(
1999
).
37.
F.
Chiu
,
Adv. Mater. Sci. Eng.
2014
,
578168
(
2014
).
38.
J. S.
Lee
,
S.
Lee
, and
T. W.
Noh
,
Appl. Phys. Rev.
2
,
031303
(
2015
).

Supplementary Material

You do not currently have access to this content.