In this study, a novel strategy to generate sophisticated acoustic streaming vortices, which would be available for rotational manipulation of micro-/nano-scale objects, is proposed and simulated. All structural units in the microfluidic chamber are symmetric in design, and all radiation surfaces have the same settings of input frequency, oscillation amplitude, and initial phase. Different kinds of asymmetric acoustofluidic patterns can be generated in the originally static microfluidic chamber only because of the asymmetric arrangement of multiple radiation surfaces in space. The calculation results of kaleidoscopic acoustofluidic fields together with particle movement trajectories induced by cross structures with different radiation surface distributions further demonstrate the versatile particle manipulation capabilities of these functional microfluidic devices. In comparison to the existing oscillation modulation method, which requires multiple radiation surfaces with different initial phases, acoustofluidic devices with a same initial phase of all radiation surfaces can significantly reduce the required number of auxiliary signal generators and power amplifiers. The proposed generation method of acoustofluidic patterns is promising for microfluidic mixing without rotating machinery, driving operation of microrobots, and rotational manipulation of biological samples.

1.
J.
Friend
and
L. Y.
Yeo
,
Rev. Mod. Phys.
83
,
647
(
2011
).
2.
N.
Périnet
,
P.
Gutiérrez
,
H.
Urra
,
N.
Mujica
, and
L.
Gordillo
,
J. Fluid Mech.
819
,
285
310
(
2017
).
3.
C.
Zhang
,
X.
Guo
,
P.
Brunet
,
M.
Costalonga
, and
L.
Royon
,
Microfluid. Nanofluidics
23
, 104 (
2019
).
4.
S.
Liu
,
Y.
Yang
,
Z.
Ni
,
X.
Guo
,
L.
Luo
,
J.
Tu
,
D.
Zhang
, and A. J. Zhang
Sensors
17
,
1664
(
2017
).
5.
H.
Ceylan
,
J.
Giltinan
,
K.
Kozielski
, and
M.
Sitti
,
Lab Chip
17
,
1705
1724
(
2017
).
6.
X.
Chen
,
X.
Bayanheshig
,
Q.
Jiao
,
X.
Tan
, and
W.
Wang
,
Int. J. Heat Mass Transfer
171
,
121074
(
2021
).
7.
H.
Bruus
,
J.
Dual
,
J.
Hawkes
,
M.
Hill
,
T.
Laurell
,
J.
Nilsson
,
S.
Radel
,
S.
Sadhal
, and
M.
Wiklund
,
Lab Chip
11
,
3579,3580
(
2011
).
8.
W.
Connacher
,
N.
Zhang
,
A.
Huang
,
J.
Mei
,
S.
Zhang
,
T.
Gopesh
, and
J.
Friend
,
Lab Chip
18
,
1952
1996
(
2018
).
9.
A.
Ozcelik
,
J.
Rufo
,
F.
Guo
,
Y.
Gu
,
P.
Li
,
J.
Lata
, and
T. J.
Huang
,
Nat. Methods
15
,
1021
1028
(
2018
).
10.
Y. Q.
Fu
,
J. K.
Luo
,
N. T.
Nguyen
,
A. J.
Walton
,
A. J.
Flewitt
,
X. T.
Zu
,
Y.
Li
,
G.
McHale
,
A.
Matthews
,
E.
Iborra
,
H.
Du
, and
W. I.
Milne
,
Prog. Mater. Sci.
89
,
31
91
(
2017
).
11.
M.
Antfolk
and
T.
Laurell
,
Acoustofluidic Blood Component Sample Preparation and Processing in Medical Applications, in Applications of Microfluidic Systems in Biology and Medicine
(
Springer
,
Singapore
,
2019
).
12.
G.
Destgeer
and
H. J.
Sung
, “
Recent advances in microfluidic actuation and micro-object manipulation via surface acoustic waves
,”
Lab Chip
15
,
2722
2738
(
2015
).
13.
J.
Friend
,
C.
Thompson
,
K.
Chitale
, and
M.
Denis
,
J. Acoust. Soc. Am.
150
,
4558
4560
(
2021
).
14.
P.
Li
and
T. J.
Huang
,
Anal. Chem.
91
,
757
767
(
2019
).
15.
Y.
Cheng
,
Y.
Wang
,
Z.
Ma
,
W.
Wang
, and
X.
Ye
,
Lab Chip
16
,
4517
4526
(
2016
).
16.
J.
Zhang
,
S.
Yan
,
D.
Yuan
,
G.
Alici
,
N. T.
Nguyen
,
M. E.
Warkiani
, and
W.
Li
,
Lab Chip
16
,
10
34
(
2016
).
17.
C. H.
Tsai
,
X.
Wu
,
D. H.
Kuan
,
S.
Zimmermann
,
R.
Zengerle
, and
P.
Koltay
,
J. Micromech. Microeng.
28
,
084001
(
2018
).
18.
S. K.
Jericho
,
M. H.
Jericho
,
T.
Hubbard
, and
M.
Kujath
,
Rev. Sci. Instrum.
75
,
1280
1282
(
2004
).
19.
S. K.
Fan
,
T. H.
Hsieh
, and
D. Y.
Lin
,
Lab Chip
9
,
1236
1242
(
2009
).
20.
F.
Alnaimat
,
S.
Dagher
,
B.
Mathew
,
A.
Hilal-Alnqbi
, and
S.
Khashan
,
Chem. Rec.
18
,
1596
1612
(
2018
).
21.
H.
Yang
and
M. A.
Gijs
,
Chem. Soc. Rev.
47
,
1391
1458
(
2018
).
22.
J.
Chen
,
J. F. C.
Loo
,
D.
Wang
,
Y.
Zhang
,
S. K.
Kong
, and
H. P.
Ho
,
Adv. Opt. Mater.
8
,
1900829
(
2020
).
23.
K.
Kolesnik
,
M.
Xu
,
P. V.
Lee
,
V.
Rajagopal
, and
D. J.
Collins
,
Lab Chip
21
,
2837
2856
(
2021
).
24.
F.
Li
,
F.
Cai
,
L.
Zhang
,
Z.
Liu
,
F.
Li
,
L.
Meng
,
J.
Wu
,
J.
Li
,
X.
Zhang
, and
H.
Zheng
,
Phys. Rev. Appl.
13
,
044077
(
2020
).
25.
Y.
Gu
,
C.
Chen
,
J.
Rufo
,
C.
Shen
,
Z.
Wang
,
P. H.
Huang
,
H.
Fu
,
P.
Zhang
,
S. A.
Cummer
,
Z.
Tian
, and
T. J.
Huang
,
ACS Nano
14
,
14635
14645
(
2020
).
27.
J.
Lei
,
Microfluid. Nanofluidics
21
, 50 (
2017
).
28.
Q.
Tang
,
P.
Liu
,
X.
Guo
,
S.
Zhou
, and
Y.
Dong
,
Microfluid. Nanofluidics
24
,
1
22
(
2020
).
29.
P. B.
Muller
,
R.
Barnkob
,
M. J. H.
Jensen
, and
H.
Bruus
,
Lab Chip
12
,
4617
4627
(
2012
).
30.
J.
Hu
,
Ultrasonic Micro/Nano Manipulations: Principles and Examples
(
World Scientific
,
Singapore
,
2014
).
31.
T.
Tang
,
B.
Dong
, and
L.
Huang
,
Ultrason. Sonochem.
75
,
105590
(
2021
).
32.
G. T.
Silva
,
J. Acoust. Soc. Am.
130
,
3541
3544
(
2011
).
33.
T.
Tang
and
L.
Huang
,
J. Sound Vib.
509
,
116256
(
2021
).
34.
T.
Tang
and
L.
Huang
,
Phys. Rev. E
105
,
055110
(
2022
).
35.
T.
Tang
and
L.
Huang
,
J. Sound Vib.
532
,
117012
(
2022
).
36.
A. L.
Bernassau
,
P.
Glynne-Jones
,
F.
Gesellchen
,
M.
Riehle
,
M.
Hill
, and
D. R. S.
Cumming
,
Ultrasonics
54
,
268
274
(
2014
).
37.
J. S.
Bach
and
B.
Henrik
,
Phys. Rev. E
100
,
023104
(
2019
).
38.
S.
Huang
,
L.
Peng
,
H.
Sun
,
Q.
Wang
,
W.
Zhao
, and
S.
Wang
,
Appl. Acoust.
173
,
107692
(
2021
).
39.
Q.
Tang
,
S.
Zhou
,
L.
Huang
, and
Z.
Chen
,
Micromachines
10
,
803
(
2019
).
40.
Q.
Tang
,
P.
Liu
, and
S.
Tang
,
Chin. Phys. B
31
,
044301
(
2022
).
41.
Q.
Tang
,
F.
Liang
,
L.
Huang
,
P.
Zhao
, and
W.
Wang
,
Biomed. Microdevices
22
,
1
11
(
2020
).
42.
H.
Zhang
,
Z.
Tang
,
Z.
Wang
,
S.
Pan
,
Z.
Han
,
C.
Sun
,
M.
Zhang
,
X.
Duan
, and
W.
Pang
,
Phys. Rev. Appl.
9
,
064011
(
2018
).
43.
H.
Zhu
,
P.
Zhang
,
Z.
Zhong
,
J.
Xia
,
J.
Rich
,
J.
Mai
,
X.
Su
,
Z.
Tian
,
H.
Bachman
,
J.
Rufo
,
Y.
Gu
,
P.
Kang
,
K.
Chakrabarty
,
T. P.
Witelski
, and
T. J.
Huang
,
Sci. Adv.
7
,
eabc7885
(
2021
).

Supplementary Material

You do not currently have access to this content.