We present a detailed investigation of spin pumping from full Heusler compound Co2FeSi (CFS) to single-layer two-dimensional (2D) transition metal dichalcogenide (TMD) MoS2 (molybdenum disulfide) excited by ferromagnetic resonance. Microwave-induced spin pumping has been identified by a significant enhancement of Gilbert damping in Si/SiO2/MoS2/CFS heterostructures as compared to bare Si/SiO2/CFS samples. The CFS thickness dependent spin mixing conductance indicates an efficient spin transparent interface of MoS2/CFS. In addition, the spin-to-charge conversion process has been quantified using inverse spin Hall effect (ISHE) measurements. In ISHE measurements, a highly symmetric Lorentzian DC voltage signal in Si/SiO2/MoS2/CFS heterostructures is observed in comparison with a highly asymmetric signal in bare Si/SiO2/CFS samples, establishing a clear sign of FMR induced spin pumping. The results in this work are expected to aid in the understanding of the spin angular momentum transfer phenomenon at the interface of the 2D TMDs/ferromagnet bilayer system.

1.
J.
Grollier
,
D.
Querlioz
, and
M. D.
Stiles
, “
Spintronic nanodevices for bioinspired computing
,”
Proc. IEEE
104
(
10
),
2024
2039
(
2016
).
2.
Brooks
,
D.
;
Martonosi
,
M
. “
Dynamic thermal management for high-performance microprocessors
,” in
Proceedings HPCA Seventh International Symposium on High-Performance Computer Architecture
(
IEEE
,
2001
), pp
171
182
.
3.
A.
Sengupta
and
K.
Roy
, “
Encoding neural and synaptic functionalities in electron spin: A pathway to efficient neuromorphic computing
,”
Appl. Phys. Rev.
4
(
4
),
041105
(
2017
).
4.
Y.
Tserkovnyak
,
A.
Brataas
,
G. E. W.
Bauer
, and
B. I.
Halperin
, “
Nonlocal magnetization dynamics in ferromagnetic heterostructures
,”
Rev. Mod. Phys.
77
(
4
),
1375
(
2005
).
5.
K.
Ando
,
S.
Takahashi
,
J.
Ieda
,
H.
Kurebayashi
,
T.
Trypiniotis
,
C. H. W.
Barnes
,
S.
Maekawa
, and
E.
Saitoh
, “
Electrically tunable spin injector free from the impedance mismatch problem
,”
Nat. Mater.
10
(
9
),
655
659
(
2011
).
6.
Q.
Shao
,
G.
Yu
,
Y.-W.
Lan
,
Y.
Shi
,
M.-Y.
Li
,
C.
Zheng
,
X.
Zhu
,
L.-J.
Li
,
P. K.
Amiri
, and
K. L.
Wang
, “
Strong Rashba-Edelstein effect-induced spin–orbit torques in monolayer transition metal dichalcogenide/ferromagnet bilayers
,”
Nano Lett.
16
(
12
),
7514
7520
(
2016
).
7.
S.-I.
Kim
,
D.-J.
Kim
,
M.-S.
Seo
,
B.-G.
Park
, and
S.-Y.
Park
, “
Stacking order dependence of inverse spin Hall effect and anomalous Hall effect in spin pumping experiments
,”
J. Appl. Phys.
117
(
17
),
17D901
(
2015
).
8.
N. K. P.
Babu
,
A.
Trzaskowska
,
S.
Mielcarek
,
H.
Głowiński
,
O. M.
Chumak
,
M.
Zdunek
,
J. W.
Kłos
, and
M.
Krawczyk
, “
Interaction between thermal magnons and phonons in a CoFeB/Au multilayer
,”
IEEE Magn. Lett.
10
,
1
5
(
2019
).
9.
S.
Pan
,
S.
Choudhury
,
J.
Sinha
, and
A.
Barman
, “
All-optical investigation of anisotropic spin pumping in W/CoFeB/W heterostructure
,”
J. Magn. Magn. Mater.
502
,
166545
(
2020
).
10.
A.
Conca
,
B.
Heinz
,
M. R.
Schweizer
,
S.
Keller
,
E. T.
Papaioannou
, and
B.
Hillebrands
, “
Lack of correlation between the spin-mixing conductance and the inverse spin Hall effect generated voltages in CoFeB/Pt and CoFeB/Ta bilayers
,”
Phys. Rev. B
95
(
17
),
174426
(
2017
).
11.
W.
Lv
,
Z.
Jia
,
B.
Wang
,
Y.
Lu
,
X.
Luo
,
B.
Zhang
,
Z.
Zeng
, and
Z.
Liu
, “
Electric-field control of spin–orbit torques in WS2/permalloy bilayers
,”
ACS Appl. Mater. Interfaces
10
(
3
),
2843
2849
(
2018
).
12.
S.
Husain
,
R.
Gupta
,
A.
Kumar
,
P.
Kumar
,
N.
Behera
,
R.
Brucas
,
S.
Chaudhary
, and
P.
Svedlindh
, “
Emergence of spin–orbit torques in 2D transition metal dichalcogenides: A status update
,”
Appl. Phys. Rev.
7
(
4
),
041312
(
2020
).
13.
S.
Husain
,
S.
Pal
,
X.
Chen
,
P.
Kumar
,
A.
Kumar
,
A. K.
Mondal
,
N.
Behera
,
N. K.
Gupta
,
S.
Hait
, and
R.
Gupta
, “
Large Dzyaloshinskii–Moriya interaction and atomic layer thickness dependence in a ferromagnet-WS2 heterostructure
,”
Phys. Rev. B
105
(
6
),
64422
(
2022
).
14.
G.
Wu
,
Y.
Ren
,
X.
He
,
Y.
Zhang
,
H.
Xue
,
Z.
Ji
,
Q. Y.
Jin
, and
Z.
Zhang
, “
Tuning magnetization dynamics with strong spin-orbit coupling in transition-metal dichalcogenide/Co-Fe-B heterostructures
,”
Phys. Rev. Appl.
13
(
2
),
24027
(
2020
).
15.
A.
Avsar
,
H.
Ochoa
,
F.
Guinea
,
B.
Ozyilmaz
,
B. J.
Van Wees
, and
I. J.
Vera-Marun
, “Colloquium: Spintronics in graphene and other two-dimensional materials,” arXiv:1909.09188 2019.
16.
Y.
Liu
and
Q.
Shao
, “
Two-dimensional materials for energy-efficient spin–orbit torque devices
,”
ACS Nano
14
(
8
),
9389
9407
(
2020
).
17.
K.
Garello
,
I. M.
Miron
,
C. O.
Avci
,
F.
Freimuth
,
Y.
Mokrousov
,
S.
Blügel
,
S.
Auffret
,
O.
Boulle
,
G.
Gaudin
, and
P.
Gambardella
, “
Symmetry and magnitude of spin–orbit torques in ferromagnetic heterostructures
,”
Nat. Nanotechnol.
8
(
8
),
587
593
(
2013
).
18.
A. J.
Berger
,
E. R. J.
Edwards
,
H. T.
Nembach
,
O.
Karis
,
M.
Weiler
, and
T. J.
Silva
, “
Determination of the spin Hall effect and the spin diffusion length of Pt from self-consistent fitting of damping enhancement and inverse spin-orbit torque measurements
,”
Phys. Rev. B
98
(
2
),
24402
(
2018
).
19.
Z. Y.
Zhu
,
Y. C.
Cheng
, and
U.
Schwingenschlögl
, “
Giant spin-orbit-induced spin splitting in two-dimensional transition-metal dichalcogenide semiconductors
,”
Phys. Rev. B
84
(
15
),
153402
(
2011
).
20.
C. K.
Safeer
,
J.
Ingla-Aynés
,
F.
Herling
,
J. H.
Garcia
,
M.
Vila
,
N.
Ontoso
,
M. R.
Calvo
,
S.
Roche
,
L. E.
Hueso
, and
F.
Casanova
, “
Room-temperature spin Hall effect in graphene/MoS2 van der Waals heterostructures
,”
Nano Lett.
19
(
2
),
1074
1082
(
2019
).
21.
I.
Galanakis
,
P. H.
Dederichs
, and
N.
Papanikolaou
, “
Slater–Pauling behavior and origin of the half-metallicity of the full-Heusler alloys
,”
Phys. Rev. B
66
(
17
),
174429
(
2002
).
22.
M.
Meinert
,
J.-M.
Schmalhorst
,
M.
Glas
,
G.
Reiss
,
E.
Arenholz
,
T.
Böhnert
, and
K.
Nielsch
, “
Insights into the electronic structure of Co2 FeSi from x-ray magnetic linear dichroism
,”
Phys. Rev. B
86
(
5
),
54420
(
2012
).
23.
T.
Kimura
,
N.
Hashimoto
,
S.
Yamada
,
M.
Miyao
, and
K.
Hamaya
, “
Room-temperature generation of giant pure spin currents using epitaxial Co2FeSi spin injectors
,”
NPG Asia Mater.
4
(
3
),
e9
(
2012
).
24.
A. D.
Kent
and
D. C.
Worledge
, “
A new spin on magnetic memories
,”
Nat. Nanotechnol.
10
(
3
),
187
191
(
2015
).
25.
V.
Sharma
,
R. K.
Ghosh
, and
B. K.
Kuanr
, “
Influence of ferromagnetic layer thickness on the Gilbert damping and magnetocrystalline anisotropy in PLD grown epitaxial Co2FeSi Heusler alloy thin films
,”
Results Surf. Interfaces
6
,
100052
(
2022
).
26.
J.
Manschot
,
A.
Brataas
, and
G. E. W.
Bauer
, “
Reducing the critical switching current in nanoscale spin valves
,”
Appl. Phys. Lett.
85
(
15
),
3250
3252
(
2004
).
27.
E. B.
Myers
,
D. C.
Ralph
,
J. A.
Katine
,
R. N.
Louie
, and
R. A.
Buhrman
, “
Current-induced switching of domains in magnetic multilayer devices
,”
Science
285
(
5429
),
867
870
, (
1999
).
28.
N.
Tombros
,
C.
Jozsa
,
M.
Popinciuc
,
H. T.
Jonkman
, and
B. J.
Van Wees
, “
Electronic spin transport and spin precession in single graphene layers at room temperature
,”
Nature
448
(
7153
),
571
574
(
2007
).
29.
M.
Drögeler
,
C.
Franzen
,
F.
Volmer
,
T.
Pohlmann
,
L.
Banszerus
,
M.
Wolter
,
K.
Watanabe
,
T.
Taniguchi
,
C.
Stampfer
, and
B.
Beschoten
, “
Spin lifetimes exceeding 12 ns in graphene nonlocal spin valve devices
,”
Nano Lett.
16
(
6
),
3533
3539
(
2016
).
30.
W.
Jie
,
Z.
Yang
,
F.
Zhang
,
G.
Bai
,
C. W.
Leung
, and
J.
Hao
, “
Observation of room-temperature magnetoresistance in monolayer MoS2 by ferromagnetic gating
,”
ACS Nano
11
(
7
),
6950
6958
(
2017
).
31.
H.
Da
,
L.
Gao
,
W.
Ding
, and
X.
Yan
, “
Nonreciprocal giant magneto-optic effects in transition-metal dichalcogenides without magnetic field
,”
J. Phys. Chem. Lett.
8
(
16
),
3805
3812
(
2017
).
32.
S.
Husain
,
A.
Kumar
,
P.
Kumar
,
A.
Kumar
,
V.
Barwal
,
N.
Behera
,
S.
Choudhary
,
P.
Svedlindh
, and
S.
Chaudhary
, “
Spin pumping in the Heusler alloy Co2 FeAl/MoS2 heterostructure: Ferromagnetic resonance experiment and theory
,”
Phys. Rev. B
98
(
18
),
180404
(
2018
).
33.
S.
Liang
,
H.
Yang
,
P.
Renucci
,
B.
Tao
,
P.
Laczkowski
,
S.
Mc-Murtry
,
G.
Wang
,
X.
Marie
,
J.-M.
George
, and
S.
Petit-Watelot
, “
Electrical spin injection and detection in molybdenum disulfide multilayer channel
,”
Nat. Commun.
8
(
1
),
1
9
(
2017
).
34.
W.
Zhang
,
J.
Sklenar
,
B.
Hsu
,
W.
Jiang
,
M. B.
Jungfleisch
,
J.
Xiao
,
F. Y.
Fradin
,
Y.
Liu
,
J. E.
Pearson
, and
J. B.
Ketterson
, “
Research update: Spin transfer torques in permalloy on monolayer MoS2
,”
APL Mater.
4
(
3
),
032302
(
2016
).
35.
J. B. S.
Mendes
,
A.
Aparecido-Ferreira
,
J.
Holanda
,
A.
Azevedo
, and
S. M.
Rezende
, “
Efficient spin to charge current conversion in the 2D semiconductor MoS2 by spin pumping from yttrium iron garnet
,”
Appl. Phys. Lett.
112
(
24
),
242407
(
2018
).
36.
W.-Y.
Lee
,
N.-W.
Park
,
M.-S.
Kang
,
G.-S.
Kim
,
H. W.
Jang
,
E.
Saitoh
, and
S.-K.
Lee
, “
Surface coverage dependence of spin-to-charge current across Pt/MoS2/Y3Fe5O12 layers via longitudinal spin Seebeck effect
,”
J. Phys. Chem. Lett.
11
(
13
),
5338
5344
(
2020
).
37.
M. C.
Breitkreitz
and
R. J.
Poppi
, “
Trends in Raman chemical imaging
,”
Biomed. Spectrosc. Imag.
1
(
2
),
159
183
(
2012
).
38.
S.
Lohumi
,
M. S.
Kim
,
J.
Qin
, and
B.-K.
Cho
, “
Raman imaging from microscopy to macroscopy: Quality and safety control of biological materials
,”
TrAC Trends Anal. Chem.
93
,
183
198
(
2017
).
39.
X.
Zhang
,
W. P.
Han
,
J. B.
Wu
,
S.
Milana
,
Y.
Lu
,
Q. Q.
Li
,
A. C.
Ferrari
, and
P. H.
Tan
, “
Raman spectroscopy of shear and layer breathing modes in multilayer MoS2
,”
Phys. Rev. B
87
(
11
),
115413
(
2013
).
40.
F.
Liang
,
H.
Xu
,
X.
Wu
,
C.
Wang
,
C.
Luo
, and
J.
Zhang
, “
Raman spectroscopy characterization of two-dimensional materials
,”
Chinese Phys. B
27
(
3
),
037802
(
2018
).
41.
G.
Siegel
,
Y. P.
Venkata Subbaiah
,
M. C.
Prestgard
, and
A.
Tiwari
, “
Growth of centimeter-scale atomically thin MoS2 films by pulsed laser deposition
,”
APL Mater.
3
(
5
),
056103
(
2015
).
42.
J.
Yue
,
J.
Jian
,
P.
Dong
,
L.
Luo
, and
F.
Chang
, “
Growth of single-layer MoS2 by chemical vapor deposition on sapphire substrate
,” in
IOP Conference Series: Materials Science and Engineering
(
IOP Publishing
,
2019
), Vol.
592
, p.
12044
.
43.
L.
Tao
,
K.
Chen
,
Z.
Chen
,
W.
Chen
,
X.
Gui
,
H.
Chen
,
X.
Li
, and
J.-B.
Xu
, “
Centimeter-Scale CVD growth of highly crystalline single-layer MoS2 film with spatial homogeneity and the visualization of grain boundaries
,”
ACS Appl. Mater. Interfaces
9
(
13
),
12073
12081
(
2017
).
44.
N.
Patra
,
C. L.
Prajapat
,
P. D.
Babu
,
S.
Rai
,
S.
Kumar
,
S. N.
Jha
, and
D.
Bhattacharyya
, “
Pulsed laser deposited Co2FeSi Heusler alloy thin films: Effect of different thermal growth processes
,”
J. Alloys Compd.
804
,
470
485
(
2019
).
45.
W.
Zhu
,
D.
Wu
,
B.
Zhao
,
Z.
Zhu
,
X.
Yang
,
Z.
Zhang
, and
Q. Y.
Jin
, “
Correlations between structural and magnetic properties of Co2FeSi Heusler-alloy thin films
,”
Phys. Rev. Appl.
8
(
3
),
34012
(
2017
).
46.
P.
Bajracharya
,
V.
Sharma
,
A.
Johnson
, and
R. C.
Budhani
, “
Resonant precession of magnetization and precession—Induced DC voltages in FeGaB thin films
,”
J. Phys. D: Appl. Phys.
55
(
7
),
075303
(
2022
).
47.
B. B.
Singh
,
S. K.
Jena
, and
S.
Bedanta
, “
Study of spin pumping in Co thin film vis-à-vis seed and capping layers using ferromagnetic resonance spectroscopy
,”
J. Phys. D: Appl. Phys.
50
(
34
),
345001
(
2017
).
48.
W. H.
Wang
,
M.
Przybylski
,
W.
Kuch
,
L. I.
Chelaru
,
J.
Wang
,
Y. F.
Lu
,
J.
Barthel
,
H. L.
Meyerheim
, and
J.
Kirschner
, “
Magnetic properties and spin polarization of Co2MnSi Heusler alloy thin films epitaxially grown on GaAs (001)
,”
Phys. Rev. B
71
(
14
),
144416
(
2005
).
49.
V.
Sharma
,
S.
Kumari
, and
B. K.
Kuanr
, “
Exchange-coupled hard-soft ferrites: A new microwave material
,”
J. Alloys Compd.
736
, 266–275 (
2018
).
50.
A.
Azevedo
,
A. B.
Oliveira
,
F. M.
De Aguiar
, and
S. M.
Rezende
, “
Extrinsic contributions to spin-wave damping and renormalization in thin Ni50Fe50 films
,”
Phys. Rev. B
62
(
9
),
5331
(
2000
).
51.
R.
Arias
and
D. L.
Mills
, “
Extrinsic contributions to the ferromagnetic resonance response of ultrathin films
,”
Phys. Rev. B
60
(
10
),
7395
(
1999
).
52.
K.
Xia
,
P. J.
Kelly
,
G. E. W.
Bauer
,
A.
Brataas
, and
I.
Turek
, “
Spin torques in ferromagnetic/normal-metal structures
,”
Phys. Rev. B
65
(
22
),
220401
(
2002
).
53.
H. L.
Wang
,
C. H.
Du
,
Y.
Pu
,
R.
Adur
,
P. C.
Hammel
, and
F. Y.
Yang
, “
Scaling of spin Hall angle in 3d, 4d, and 5d metals from Y3Fe5O12/metal spin pumping
,”
Phys. Rev. Lett.
112
(
19
),
197201
(
2014
).
54.
S.
Husain
,
A.
Kumar
,
V.
Barwal
,
N.
Behera
,
S.
Akansel
,
P.
Svedlindh
, and
S.
Chaudhary
, “
Spin pumping in Ion-beam sputtered Co2 FeAl/Mo bilayers: Interfacial Gilbert damping
,”
Phys. Rev. B
97
(
6
),
64420
(
2018
).
55.
J. M.
Shaw
,
H. T.
Nembach
, and
T. J.
Silva
, “
Determination of spin pumping as a source of linewidth in sputtered Co90Fe10/Pd multilayers by Use of broadband ferromagnetic resonance spectroscopy
,”
Phys. Rev. B
85
(
5
),
54412
(
2012
).
56.
H.
Nakayama
,
K.
Ando
,
K.
Harii
,
T.
Yoshino
,
R.
Takahashi
,
Y.
Kajiwara
,
K.
Uchida
,
Y.
Fujikawa
, and
E.
Saitoh
, “
Geometry dependence on inverse spin Hall effect induced by spin pumping in Ni81Fe19/Pt films
,”
Phys. Rev. B
85
(
14
),
144408
(
2012
).
57.
K.
Ando
,
S.
Takahashi
,
J.
Ieda
,
Y.
Kajiwara
,
H.
Nakayama
,
T.
Yoshino
,
K.
Harii
,
Y.
Fujikawa
,
M.
Matsuo
, and
S.
Maekawa
, “
Inverse spin-Hall effect induced by spin pumping in metallic system
,”
J. Appl. Phys.
109
(
10
),
103913
(
2011
).
58.
H.
Jiao
and
G. E. W.
Bauer
, “
Spin backflow and ac voltage generation by spin pumping and the inverse spin Hall effect
,”
Phys. Rev. Lett.
110
(
21
),
217602
(
2013
).
59.
D.
Xiao
,
G.-B.
Liu
,
W.
Feng
,
X.
Xu
, and
W.
Yao
, “
Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides
,”
Phys. Rev. Lett.
108
(
19
),
196802
(
2012
).
60.
K. F.
Mak
,
K.
He
,
J.
Shan
, and
T. F.
Heinz
, “
Control of valley polarization in monolayer MoS2 by optical helicity
,”
Nat. Nanotechnol.
7
(
8
),
494
498
(
2012
).
61.
E.
Saitoh
,
M.
Ueda
,
H.
Miyajima
, and
G.
Tatara
, “
Conversion of spin current into charge current at room temperature: Inverse spin-Hall effect
,”
Appl. Phys. Lett.
88
(
18
),
182509
(
2006
).
62.
A.
Tsukahara
,
Y.
Ando
,
Y.
Kitamura
,
H.
Emoto
,
E.
Shikoh
,
M. P.
Delmo
,
T.
Shinjo
, and
M.
Shiraishi
, “
Self-Induced inverse spin Hall effect in permalloy at room temperature
,”
Phys. Rev. B
89
(
23
),
235317
(
2014
).
63.
J. C.
Sánchez
,
L.
Vila
,
G.
Desfonds
,
S.
Gambarelli
,
J. P.
Attané
,
J. M.
De Teresa
,
C.
Magén
, and
A.
Fert
, “
Spin-to-charge conversion using Rashba coupling at the interface between non-magnetic materials
,”
Nat. Commun.
4
(
1
),
1
7
(
2013
).
64.
V.
Sharma
,
P.
Bajracharya
,
A.
Johnson
, and
R. C.
Budhani
, “
Interface-driven spin pumping and inverse Rashba-Edelstein effect in FeGaB/Ag/BiSb multilayers
,”
AIP Adv.
12
(
3
),
035028
(
2022
).
65.
J. B. S.
Mendes
,
O. A.
Santos
,
L. M.
Meireles
,
R. G.
Lacerda
,
L. H.
Vilela-Leão
,
F. L. A.
Machado
,
R. L.
Rodríguez-Suárez
,
A.
Azevedo
, and
S. M.
Rezende
, “
Spin-current to charge-current conversion and magnetoresistance in a hybrid structure of graphene and yttrium iron garnet
,”
Phys. Rev. Lett.
115
(
22
),
226601
(
2015
).

Supplementary Material

You do not currently have access to this content.