Molybdenum is used as plasma-facing material in tokamaks and as material for plasma optical diagnostics mirrors. Harsh conditions of neutron irradiation, exposure to hydrogen isotopes and helium ions, and high operating temperatures result in degradation of the molybdenum surface and ultimately limit their lifetime in a fusion power plant. In the current paper, intake and subsequent thermal release of deuterium from self-irradiated by high energy (1 MeV) ions molybdenum as a function of irradiation dose are investigated. Several characteristic temperature regions where deuterium release takes place are identified and attributed to trapping of deuterium in intrinsic and radiation-induced microstructure defects. This attribution is further validated by molecular dynamics modeling, which confirms that increase and saturation of vacancy concentration found in simulations follows increase and saturation of experimentally determined deuterium content. Deuterium inventory and vacancy content saturate at a damage level of around 0.2 dpa (displacement per atom), similar to recent modeling and experimental studies of iron and tungsten. Reflectivity measurements of irradiated molybdenum show that it is only slightly affected by damage up to 1 dpa.

1.
E. S.
Marmar
 et al,
Fusion Sci. Technol.
51
,
261
(
2007
).
2.
E. A.
Tolman
 et al,
Nucl. Fusion
58
,
046004
(
2018
).
3.
Z. X.
Liu
 et al,
Nucl. Fusion
53
,
073041
(
2013
).
4.
J. L.
Terry
 et al,
Rev. Sci. Instrum.
81
,
10E513
(
2010
).
5.
J. N.
Brooks
 et al,
Nucl. Fusion
55
,
043002
(
2015
).
6.
M.
Rieth
 et al,
J. Nucl. Mater.
432
,
482
(
2013
).
7.
M. R.
Gilbert
,
L. W.
Packer
, and
T.
Stainer
,
Nucl. Fusion
60
,
106022
(
2020
).
8.
D. L.
Rudakov
 et al,
Rev. Sci. Instrum.
77
,
10F126
(
2006
).
9.
A.
Litnovsky
 et al,
Nucl. Fusion
47
,
833
(
2007
).
10.
A.
Litnovsky
 et al,
Nucl. Fusion
49
,
075014
(
2009
).
11.
A. J. H.
Donné
,
Fusion Sci. Technol.
61
,
357
(
2012
).
12.
A.
Litnovsky
 et al,
Nucl. Fusion
59
,
066029
(
2019
).
13.
A.
Litnovsky
 et al,
Fusion Eng. Des.
146
,
1450
(
2019
).
14.
K.
Soni
 et al,
Nucl. Mater. Energy
21
,
100702
(
2019
).
15.
R. A.
Pitts
 et al,
Plasma Phys. Control. Fusion
47
,
B303
(
2005
).
16.
S.
Moon
 et al,
Nucl. Mater. Energy
19
,
59
(
2019
).
17.
G. M.
McCracken
and
J. H. C.
Maple
,
Br. J. Appl. Phys.
18
,
919
(
1967
).
18.
S. K.
Erents
,
Vacuum
24
,
445
(
1974
).
19.
S. M.
Myers
and
F.
Besenbacher
,
J. Appl. Phys.
60
,
3499
(
1986
).
20.
O. V.
Ogorodnikova
,
J. Nucl. Mater.
390-391
,
651
(
2009
).
21.
K.
Ono
 et al,
Phys. Scr.
T138
,
014065
(
2009
).
22.
A.
Garcia-Carrasco
 et al,
Nucl. Instrum. Methods Phys. Res., Sect. B
382
,
91
(
2016
).
23.
M.
Rubel
 et al,
Phys. Scr.
T170
,
014061
(
2017
).
24.
A. T.
Krawczynska
,
Ł
Ciupiński
, and
P.
Petersson
,
Phys. Scr.
T171
,
014019
(
2020
).
25.
A. V.
Rogov
,
Y. V.
Kapustin
, and
Y. V.
Martynenko
,
Tech. Phys.
66
,
1268
(
2021
).
26.
J. F.
Ziegler
,
M. D.
Ziegler
, and
J. P.
Biersack
,
Nucl. Instrum. Methods Phys. Res., Sect. B
268
,
1818
(
2010
).
27.
R. E.
Stoller
 et al,
Nucl. Instrum. Methods Phys. Res., Sect. B
310
,
75
(
2013
).
29.
P. M.
Derlet
and
S. L.
Dudarev
,
Phys. Rev. Mater.
4
,
023605
(
2020
).
30.
A.
Hollingsworth
 et al,
Nucl. Fusion
60
,
016024
(
2020
).
31.
A.
Manhard
,
T.
Schwarz-Selinger
, and
W.
Jacob
,
Plasma Sources Sci. Technol.
20
,
015010
(
2011
).
32.
A.
Baron-Wiechec
 et al,
Fusion Eng. Des.
133
,
135
(
2018
).
33.
A.
Chartier
,
G.
Catillon
, and
J.-P.
Crocombette
,
Phys. Rev. Lett.
102
,
155503
(
2009
).
34.
A.
Chartier
and
M.-C.
Marinica
,
Acta Mater.
180
,
141
(
2019
).
35.
A. P.
Thompson
 et al,
Comput. Phys. Commun.
271
,
108171
(
2022
).
36.
See https://www.lammps.org for LAMMPS download.
37.
G. J.
Ackland
and
R.
Thetford
,
Philos. Mag. A
56
,
15
(
1987
).
38.
P.
Wang
 et al,
J. Appl. Phys.
110
,
093521
(
2011
).
39.
A.
Sharma
 et al,
Acta Mater.
198
,
72
(
2020
).
40.
F.
Granberg
,
A.
Litnovsky
, and
K.
Nordlund
,
J. Nucl. Mater.
539
,
152274
(
2020
).
41.
F. J.
Dominguez-Gutierrez
 et al,
Mater. Sci. Eng., A
826
,
141912
(
2021
).
42.
M. H. J. ‘t.
Hoen
 et al,
Nucl. Fusion
52
,
023008
(
2012
).
43.
A.
Hollingsworth
 et al,
J. Nucl. Mater.
558
,
153373
(
2022
).
44.
D.
Ivanova
 et al,
Phys. Scr.
T159
,
014011
(
2014
).
45.
A.
Stukowski
,
Modell. Simul. Mater. Sci. Eng.
18
,
015012
(
2010
).
46.
M.
Zibrov
 et al,
J. Nucl. Mater.
477
,
292
(
2016
).
47.
K.
Heinola
 et al,
Phys. Rev. B
82
,
094102
(
2010
).
48.
K.
Ohsawa
 et al,
J. Nucl. Mater.
527
,
151825
(
2019
).
49.
W. M.
Shu
,
E.
Wakai
, and
T.
Yamanishi
,
Nucl. Fusion
47
,
201
(
2007
).
50.
Y.
Zayachuk
 et al,
Nucl. Fusion
53
,
013013
(
2013
).
You do not currently have access to this content.