We have studied the resistance of two-dimensional random percolating networks of zero-width metallic nanowires (rings or sticks). We took into account the nanowire resistance per unit length, the junction (nanowire/nanowire contact) resistance, and the busbar/nanowire contact resistance. Using a mean-field approximation (MFA), we derived the total resistance of the nanoring-based networks as a function of their geometrical and physical parameters. We have proposed a way of accounting for the contribution of the busbar/nanowire contact resistance toward the network resistance. The MFA predictions have been confirmed by our Monte Carlo numerical simulations. Our study evidenced that the busbar/nanowire contact resistance has a significant effect on the electrical conductivity when the junction resistance dominates over the wire resistance.

1.
J.
Liu
,
D.
Jia
,
J. M.
Gardner
,
E. M.
Johansson
, and
X.
Zhang
, “
Metal nanowire networks: Recent advances and challenges for new generation photovoltaics
,”
Mater. Today Energy
13
,
152
185
(
2019
).
2.
R.
Benda
,
E.
Cancès
, and
B.
Lebental
, “
Effective resistance of random percolating networks of stick nanowires: Functional dependence on elementary physical parameters
,”
J. Appl. Phys.
126
,
044306
(
2019
).
3.
A.
Ponzoni
, “
The contributions of junctions and nanowires/nanotubes in conductive networks
,”
Appl. Phys. Lett.
114
,
153105
(
2019
).
4.
D.
Kim
and
J.
Nam
, “
Electrical conductivity analysis for networks of conducting rods using a block matrix approach: A case study under junction resistance dominant assumption
,”
J. Phys. Chem. C
124
,
986
996
(
2020
).
5.
N.
Fata
,
S.
Mishra
,
Y.
Xue
,
Y.
Wang
,
J.
Hicks
, and
A.
Ural
, “
Effect of junction-to-nanowire resistance ratio on the percolation conductivity and critical exponents of nanowire networks
,”
J. Appl. Phys.
128
,
124301
(
2020
).
6.
H. G.
Manning
,
P. F.
Flowers
,
M. A.
Cruz
,
C.
Gomes da Rocha
,
C.
O’Callaghan
,
M. S.
Ferreira
,
B. J.
Wiley
, and
J. J.
Boland
, “
The resistance of Cu nanowire–nanowire junctions and electro-optical modeling of Cu nanowire networks
,”
Appl. Phys. Lett.
116
,
251902
(
2020
).
7.
Y. Y.
Tarasevich
,
A. V.
Eserkepov
, and
I. V.
Vodolazskaya
, “
Electrical conductivity of nanoring-based transparent conductive films: A mean-field approach
,”
J. Appl. Phys.
130
,
244302
(
2021
).
8.
Y. Y.
Tarasevich
,
I. V.
Vodolazskaya
, and
A. V.
Eserkepov
, “
Electrical conductivity of random metallic nanowire networks: An analytical consideration along with computer simulation
,”
Phys. Chem. Chem. Phys.
24
,
11812
11819
(
2022
).
9.
Y. Y.
Tarasevich
,
A. V.
Eserkepov
, and
I. V.
Vodolazskaya
, “
Electrical conductivity of nanorod-based transparent electrodes: Comparison of mean-field approaches
,”
Phys. Rev. E
105
,
044129
(
2022
).
10.
M.
Žeželj
and
I.
Stanković
, “
From percolating to dense random stick networks: Conductivity model investigation
,”
Phys. Rev. B
86
,
134202
(
2012
).
11.
A.
Kumar
,
N. S.
Vidhyadhiraja
, and
G. U.
Kulkarni
, “
Current distribution in conducting nanowire networks
,”
J. Appl. Phys.
122
,
045101
(
2017
).
12.
C. A.
Ainsworth
,
B.
Derby
, and
W. W.
Sampson
, “
Interdependence of resistance and optical transmission in conductive nanowire networks
,”
Adv. Theory Simul.
1
,
1700011
(
2018
).
13.
C.
Forró
,
L.
Demkó
,
S.
Weydert
,
J.
Vörös
, and
K.
Tybrandt
, “
Predictive model for the electrical transport within nanowire networks
,”
ACS Nano.
12
,
11080
11087
(
2018
).
14.
J. A.
Fairfield
,
C.
Ritter
,
A. T.
Bellew
,
E. K.
McCarthy
,
M. S.
Ferreira
, and
J. J.
Boland
, “
Effective electrode length enhances electrical activation of nanowire networks: Experiment and simulation
,”
ACS Nano.
8
,
9542
9549
(
2014
).
15.
P.
Kou
,
L.
Yang
,
C.
Chang
, and
S.
He
, “
Improved flexible transparent conductive electrodes based on silver nanowire networks by a simple sunlight illumination approach
,”
Sci. Rep.
7
,
42052
(
2017
).
16.
J. H.
Park
,
G.-T.
Hwang
,
S.
Kim
,
J.
Seo
,
H.-J.
Park
,
K.
Yu
,
T.-S.
Kim
, and
K. J.
Lee
, “
Flash-induced self-limited plasmonic welding of silver nanowire network for transparent flexible energy harvester
,”
Adv. Mater.
29
,
1603473
(
2016
).
17.
C.
Gomes da Rocha
,
H. G.
Manning
,
C.
O’Callaghan
,
C.
Ritter
,
A. T.
Bellew
,
J. J.
Boland
, and
M. S.
Ferreira
, “
Ultimate conductivity performance in metallic nanowire networks
,”
Nanoscale
7
,
13011
13016
(
2015
).
18.
A. T.
Bellew
,
H. G.
Manning
,
C.
Gomes da Rocha
,
M. S.
Ferreira
, and
J. J.
Boland
, “
Resistance of single Ag nanowire junctions and their role in the conductivity of nanowire networks
,”
ACS Nano
9
,
11422
11429
(
2015
).
19.
F.
Selzer
,
C.
Floresca
,
D.
Kneppe
,
L.
Bormann
,
C.
Sachse
,
N.
Weiß
,
A.
Eychmüller
,
A.
Amassian
,
L.
Müller-Meskamp
, and
K.
Leo
, “
Electrical limit of silver nanowire electrodes: Direct measurement of the nanowire junction resistance
,”
Appl. Phys. Lett.
108
,
163302
(
2016
).
20.
J.-Y.
Lee
,
S. T.
Connor
,
Y.
Cui
, and
P.
Peumans
, “
Solution-processed metal nanowire mesh transparent electrodes
,”
Nano Lett.
8
,
689
692
(
2008
).
21.
V. H.
Nguyen
,
J.
Resende
,
D. T.
Papanastasiou
,
N.
Fontanals
,
C.
Jiménez
,
D.
Muñoz-Rojas
, and
D.
Bellet
, “
Low-cost fabrication of flexible transparent electrodes based on Al doped ZnO and silver nanowire nanocomposites: Impact of the network density
,”
Nanoscale
11
,
12097
12107
(
2019
).
22.
G.
Khanarian
,
J.
Joo
,
X.-Q.
Liu
,
P.
Eastman
,
D.
Werner
,
K.
O’Connell
, and
P.
Trefonas
, “
The optical and electrical properties of silver nanowire mesh films
,”
J. Appl. Phys.
114
,
024302
(
2013
).
23.
S.
He
,
X.
Xu
,
X.
Qiu
,
Y.
He
, and
C.
Zhou
, “
Conductivity of two-dimensional disordered nanowire networks: Dependence on length-ratio of conducting paths to all nanowires
,”
J. Appl. Phys.
124
,
054302
(
2018
).
24.
F.
Xu
,
W.
Xu
,
B.
Mao
,
W.
Shen
,
Y.
Yu
,
R.
Tan
, and
W.
Song
, “
Preparation and cold welding of silver nanowire based transparent electrodes with optical transmittances >90% and sheet resistances <10 ohm/sq
,”
J. Coll. Interf. Sci.
512
,
208
218
(
2018
).
25.
J. S.
Oh
,
J. S.
Oh
,
T. H.
Kim
, and
G. Y.
Yeom
, “
Efficient metallic nanowire welding using the eddy current method
,”
Nanotechnology
30
,
065708
(
2018
).
26.
E.-J.
Lee
,
Y.-H.
Kim
,
D. K.
Hwang
,
W. K.
Choi
, and
J.-Y.
Kim
, “
Synthesis and optoelectronic characteristics of 20 nm diameter silver nanowires for highly transparent electrode films
,”
RSC Adv.
6
,
11702
11710
(
2016
).
27.
M.-R.
Azani
and
A.
Hassanpour
, “
Silver nanorings: New generation of transparent conductive films
,”
Chem. Eur. J.
24
,
19195
19199
(
2018
).
28.
M.-R.
Azani
,
A.
Hassanpour
,
Y. Y.
Tarasevich
,
I. V.
Vodolazskaya
, and
A. V.
Eserkepov
, “
Transparent electrodes with nanorings: A computational point of view
,”
J. Appl. Phys.
125
,
234903
(
2019
).
29.
G.
Guennebaud
,
B.
Jacob
et al., “Eigen v3” (2010), see http://eigen.tuxfamily.org.
30.
M. E. J.
Newman
and
R. M.
Ziff
, “
Efficient Monte Carlo algorithm and high-precision results for percolation
,”
Phys. Rev. Lett.
85
,
4104
4107
(
2000
).
31.
M. E. J.
Newman
and
R. M.
Ziff
, “
Fast Monte Carlo algorithm for site or bond percolation
,”
Phys. Rev. E
64
,
016706
(
2001
).
32.
R. K.
Akhunzhanov
,
Y. Y.
Tarasevich
, and
I. V.
Vodolazskaya
, “
Circles of equal radii randomly placed on a plane: Some rigorous results, asymptotic behavior, and application to transparent electrodes
,”
J. Stat. Mech: Theory Exp.
2020
,
033202
(
2020
).
33.
H. G.
Manning
,
C. G.
da Rocha
,
C. O.
Callaghan
,
M. S.
Ferreira
, and
J. J.
Boland
, “
The electro-optical performance of silver nanowire networks
,”
Sci. Rep.
9
,
11550
(
2019
).
You do not currently have access to this content.