Magnetic resonance imaging (MRI) is a widely used clinical diagnostic tool, which is based on the principle of nuclear magnetic resonance of hydrogen atoms in human body. The Larmor frequency of precession of the hydrogen atoms is determined by the strength of static magnetic field (B0) of MRI. A higher B0 can directly improve signal-to-noise ratio (SNR) of MRI. However, this method involves expensive hardware installation, which could have adverse effects of tissue-heating and make MRI unsafe for patients with medical implants. Hence, efforts have been made to increase the SNR of MRI without increasing B0. An effective solution in this direction would be to boost the radiofrequency (RF) magnetic fields emitted by the body part undergoing scan, particularly by using metamaterials. The higher the received RF signal strength, the greater the SNR of MRI. For a metamaterial to be used as an “add-on” in commercial scanners, its dimensions need to be designed appropriately so that it fits in the available gap between the transceiver coil and the human body. In this article, a 10-mm-thick metallo-dielectric metamaterial is designed by a stacking of alternate square-shaped capacitive patches and inductive apertures for enhancing the RF magnetic flux density and hence, the SNR of a 1.5 T MRI system. The inter-layer electromagnetic coupling in the stacked structure is deployed for spatial localization of magnetic fields at the resonant frequency (∼64 MHz) which is equal to the Larmor frequency of 1.5 T MRI. An equivalent circuit model, comprising a lumped-element third order bandpass filter, validated the transmissivity characteristics of the metamaterial obtained using full-wave simulations. Magnetic flux density enhancement by a factor of 55 is obtained when the metamaterial add-on is placed between a surface coil and a bio-model of human head.

1.
Y. V.
Kargina
,
M. B.
Gongalsky
,
A. M.
Perepukhov
,
A. A.
Gippius
,
A. A.
Minnekhanov
,
E. A.
Zvereva
,
A. V.
Maximychev
, and
V. Y.
Timoshenko
, “
Investigation of proton spin relaxation in water with dispersed silicon nanoparticles for potential magnetic resonance imaging applications
,”
J. Appl. Phys.
123
,
104302
(
2018
).
2.
R.
Schmidt
and
A.
Webb
, “
Metamaterial combining electric- and magnetic-dipole-based configurations for unique dual-band signal enhancement in ultrahigh-field magnetic resonance imaging
,”
ACS Appl. Mater. Interfaces
9
(
40
),
34618
34624
(
2017
).
3.
M. A.
Griswold
,
P. M.
Jakob
,
M.
Nittka
,
J. W.
Goldfarb
, and
A.
Haase
, “
Partially parallel imaging with localized sensitivities (PILS)
,”
Magn. Reson. Med.
44
(
4
),
602
609
(
2000
).
4.
D. K.
Sodickson
and
W. J.
Manning
, “
Simultaneous acquisition of spatial harmonics (SMASH): Fast imaging with radio frequency coil arrays
,”
Magn. Reson. Med.
38
,
591
603
(
1997
).
5.
E.
Georget
,
M.
Luong
,
A.
Vignaud
,
E.
Giacomini
,
E.
Chazel
,
G.
Ferrand
,
A.
Amadon
,
F.
Mauconduit
,
S.
Enoch
,
G.
Tayeb
,
N.
Bonod
,
C.
Poupon
, and
R.
Abdeddaim
, “
Stacked magnetic resonators for MRI RF coils decoupling
,”
J. Magn. Reson.
275
,
11
18
(
2017
).
6.
F.
Vazquez
,
R.
Martin
,
O.
Marrufo
, and
A. O.
Rodriguez
, “
Travelling wave magnetic resonance imaging at 3 T
,”
J. Appl. Phys.
114
,
064906
(
2013
).
7.
A. V.
Shchelokova
,
A. P.
Slobozhanyuk
,
P.
Bruin
,
I.
Zivkovic
,
E.
Kallos
,
P. A.
Belov
, and
A.
Webb
, “
Experimental investigation of a metasurface resonator for in vivo imaging at 1.5 T
,”
J. Magn. Reson.
286
,
78
81
(
2018
).
8.
J. C.
Camacho
,
C. C.
Moreno
,
A. D.
Shah
,
P. K.
Mittal
,
A.
Mengistu
,
M. S.
Lloyd
,
M. F.
El-Chami
,
S.
Lerakis
, and
A. M.
Saindane
, “
Safety and quality of 1.5-T MRI in patients with conventional and MRI-conditional cardiac implantable electronic devices after implementation of a standardized protocol
,”
Am. J. Roentgenol.
207
(
3
),
599
604
(
2016
).
9.
A. P.
Slobozhanyuk
,
A. N.
Poddubny
,
A. J. E.
Raaijmakers
,
C. A. T.
van den Berg
,
A. V.
Kozachenko
,
I. A.
Dubrovina
,
I. V.
Melchakova
,
Y. S.
Kivshar
, and
P. A.
Belov
, “
Enhancement of magnetic resonance imaging with metasurfaces
,”
Adv. Mater.
28
(
9
),
1832
1838
(
2016
).
10.
V.
Vorobyev
,
A.
Shchelokova
,
I.
Zivkovic
,
A.
Slobozhanyuk
,
J. D.
Baena
,
J. P.
Risco
,
R.
Abdeddaim
,
A.
Webb
, and
S.
Glybovski
, “
An artificial dielectric slab for ultra high-field MRI: Proof of concept
,”
J. Magn. Reson.
320
,
106835
(
2020
).
11.
S. A.
Aussenhofer
and
A. G.
Webb
, “
Design and evaluation of a detunable water-based quadrature HEM11 mode dielectric resonator as a new type of volume coil for high field MRI
,”
Magn. Reson. Med.
68
(
4
),
1325
1331
(
2012
).
12.
S. A.
Aussenhofer
and
A. G.
Webb
, “
High-permittivity solid ceramic resonators for high-field human MRI
,”
NMR Biomed.
26
(
11
),
1555
1561
(
2013
).
13.
M. J.
Freire
,
L.
Jelinek
,
R.
Marques
, and
M.
Lapine
, “
On the applications of μr=−1 metamaterial lenses for magnetic resonance imaging
,”
J. Magn. Reson.
203
(
1
),
81
90
(
2010
).
14.
B.
Chem
,
Y.
Jiang
,
C.
Liu
,
J. R.
Raney
, and
C.
Reina
, “
Dynamic behavior of soft, resonant metamaterials: Experiments and simulations
,”
J. Appl. Phys.
129
,
135104
(
2021
).
15.
S.
Abdullah
,
G.
Xiao
, and
R. E.
Amaya
, “
A Review on the History and Current Literature of Metamaterials and Its Applications to Antennas & Radio Frequency Identification (RFID) Devices
,” in
IEEE Journal of Radio Frequency Identification
(IEEE, 2021). Vol. 5, No. 4, pp. 427–445.
16.
M. C. K.
Wiltshire
,
J. B.
Pendry
,
I. R.
Young
,
D. J.
Larkman
,
D. J.
Gilderdale
, and
J. V.
Hajnal
, “
Microstructured magnetic materials for RF flux guides in magnetic resonance imaging
,”
Science
291
(
5505
),
849
851
(
2001
).
17.
X.
Radu
,
D.
Garray
, and
C.
Craeye
, “
Toward a wire medium endoscope for MRI imaging
,”
Metamaterials
3
(
2
),
90
99
(
2009
).
18.
E. I.
Kretov
,
A. V.
Shchelokova
, and
A. P.
Slobozhanyuk
, “
Impact of wire metasurface eigenmode on the sensitivity enhancement of MRI system
,”
Appl. Phys. Lett.
112
,
033501
(
2018
).
19.
J. M.
Algarín
,
M. J.
Freire
,
F.
Breuer
, and
V. C.
Behr
, “
Metamaterial magnetoinductive lens performance as a function of field strength
,”
J. Magn. Reson.
247
,
9
14
(
2014
).
20.
M.
Li
,
J.
Gao
,
Y.
Wang
,
D.
Gray
,
J.
Li
, and
D.
Viehland
, “
Enhancement in magnetic field sensitivity and reduction in equivalent magnetic noise by magnetoelectric laminate stacks
,”
J. Appl. Phys.
111
,
104504
(
2012
).
21.
E.
Stoja
,
S.
Konstandin
,
D.
Philipp
,
R. N.
Wilke
,
D.
Betancourt
,
T.
Bertuch
, and
J.
Jenne
, “
Improving magnetic resonance imaging with smart and thin metasurfaces
,”
Sci. Rep.
11
,
16179
(
2021
).
22.
E. A.
Nenasheva
,
N. F.
Kartenko
,
I. M.
Gaidamaka
,
O. N.
Trubitsyna
,
S. S.
Redozubov
,
A. I.
Dedyk
, and
A. D.
Kanareykin
, “
Low loss microwave ferroelectric ceramics for high power tunable devices
,”
J. Eur. Ceram. Soc.
30
(
2
),
395
400
(
2010
).
23.
F.
Bayatpur
,
Metamaterial-Inspired Frequency-Selective Surfaces
(
The University of Michigan
,
2009
).
24.
M. W.
Klein
,
C.
Enkrich
,
M.
Wegener
,
C. M.
Soukoulis
, and
S.
Linden
, “
Single-slit split-ring resonators at optical frequencies: Limits of size scaling
,”
Opt. Lett.
31
(
9
),
1259
1261
(
2006
).
25.
R. J.
Langley
and
E. A.
Parker
, “
Double-square frequency-selective surfaces and their equivalent circuit
,”
Electron. Lett.
19
(
17
),
675
677
(
1983
).
26.
K.
Foster
and
H.
Schwan
, “
Dielectric properties of tissues and biological material
,”
Crit. Rev. Biomed. Eng.
17
(
1
),
25
104
(
1989
).
27.
M. A.
Stuchly
and
S. S.
Stuchly
, “
Dielectric properties of biological substances-tabulated
,”
J. Microwave Power
15
(
1
),
19
25
(
1980
).
28.
E. K.
Insko
,
M. A.
Elliott
,
J. C.
Schotland
, and
J. S.
Leigh
, “
Generalized reciprocity
,”
J. Magn. Reson.
131
(
1
),
111
117
(
1998
).
29.
C.
Gabriel
, “Compilation of the dielectric properties of body tissues at RF and microwave frequencies” (
1996
).
30.
N.
Makris
,
L.
Angelone
,
S.
Tulloch
,
S.
Sorg
,
J.
Kaiser
,
D.
Kennedy
, and
G.
Bonnmassar
, “
MRI-based anatomical model of the human head for specific absorption rate mapping
,”
Med. Biol. Eng. Comput.
46
(
12
),
1239
1251
(
2008
).
31.
J.
Chen
,
Z.
Feng
, and
J.-M.
Jin
, “
Numerical simulation of SAR and B1-field inhomogeneity of shielded RF coils loaded with the human head
,”
IEEE Trans. Biomed. Eng.
45
(
5
),
650
659
(
1998
).
32.
I.
ZivkovicI
,
W.
Teeuwisse
,
A.
Slobozhanyuk
,
E.
Nenasheva
, and
A.
Webb
, “
High permittivity ceramics improve the transmit field and receive efficiency of a commercial extremity coil at 1.5 Tesla
,”
J. Magn. Reson.
299
,
59
65
(
2019
).
33.
X.-H.
Wang
,
X.-Y.
Deng
,
H.-L.
Bai
,
H.
Zhou
,
W.-G.
Qu
,
L.-T.
Li
, and
I.-W.
Chen
, “
Two-step sintering of ceramics with constant grain-size, II: BaTiO3 and Ni-Cu-Zn ferrite
,”
J. Am. Ceram. Soc.
89
,
438
443
(
2006
).
34.
V.
Fiodorov
,
K.
Ratautas
,
Z.
Mockus
,
R.
Trusovas
,
L.
Mikoliūnaitė
, and
G.
Račiukaitis
, “
Laser-assisted selective fabrication of copper traces on polymers by electroplating
,”
Polymers
14
(
4
),
781
(
2022
).
35.
S.
Saha
,
R.
Pricci
,
M.
Koutsoupidou
,
H.
Cano-Garcia
,
D.
Katana
,
S.
Rana
,
P.
Kosmas
,
G.
Palikaras
,
A.
Webb
, and
E.
Kallos
, “
A smart switching system to enable automatic tuning and detuning of metamaterial resonators in MRI scans
,”
Sci. Rep.
10
(
1
),
1
9
(
2020
).
36.
E. A.
Brui
,
A.
Ekaterina
,
A. V.
Shchelokova
,
M.
Zubkov
,
I. V.
Melchakova
,
S. B.
Glybovski
, and
A. P.
Slobozhanyuk
, “
Adjustable subwavelength metasurface inspired resonator for magnetic resonance imaging
,”
Phys. Status Solidi (A)
215
,
5
(
2018
).
37.
E. I.
Kretov
,
I.
Egor
,
A. V.
Shchelokova
, and
A. P.
Slobozhanyuk
, “
Control of the magnetic near-field pattern inside MRI machine with tunable metasurface
,”
Appl. Phys. Lett.
115
(
6
),
061604
(
2019
).
38.
I.
Issa
,
K. L.
Ford
,
M.
Rao
, and
J. M.
Wild
, “
A magnetic resonance imaging surface coil transceiver employing a metasurface for 1.5 T applications
,”
IEEE Trans. Med. Imag.
39
(
4
),
1085
1093
(
2020
).
39.
E.
Motovilova
,
S.
Sandeep
,
M.
Hashimoto
, and
S. Y.
Huang
, “
Water-tunable highly sub-wavelength spiral resonator for magnetic field enhancement of MRI coils at 1.5 T
,”
IEEE Access
7
,
90304
90315
(
2019
).
You do not currently have access to this content.