The modified radiative and non-radiative states due to the weak coupling of an emitter with other resonant objects (Purcell effect) can be recast as a quantum interference of the paths of the photon that define the classical scattering and absorption by the object. When the coupling is stronger, additional paths representing the Rabi oscillations or the possible re-absorption of the photon from the excited object, by the emitter at the ground-state, have to be included in the quantum interference. The effect of these additional Rabi paths of the photon on the radiative states and the efficiency of spontaneous emission can be approximated using a simple one-loop correction to the weak-coupling approximation. This effect is especially evident in the anomalous enhancements of emission due to extremely small non-scattering (or almost fully absorbing) metal nanoparticles less than 10 nm in dimensions approximately. Extending these corrections to a collective model of spontaneous emission that includes multiple emitters and such very small metal nanoparticles coupled to each other, the large contribution of Rabi paths to radiative decay in such bulk materials is elucidated.

1.
Y.
Zhu
,
D. J.
Gauthier
,
S. E.
Morin
,
Q.
Wu
,
H. J.
Carmichael
, and
T. W.
Mossberg
, “
Vacuum Rabi splitting as a feature of linear-dispersion theory: Analysis and experimental observations
,”
Phys. Rev. Lett.
64
,
2499
(
1990
).
2.
F.
Bernardot
,
P.
Nussenzveig
,
M.
Brune
,
J. M.
Raimond
, and
S.
Haroche
, “
Vacuum Rabi splitting observed on a microscopic atomic sample in a microwave cavity
,”
Europhys. Lett.
17
,
33
(
1992
).
3.
A.
Boca
,
R.
Miller
,
K. M.
Birnbaum
,
A. D.
Boozer
,
J.
McKeever
, and
H. J.
Kimble
, “
Observation of the vacuum Rabi spectrum for one trapped atom
,”
Phys. Rev. Lett.
93
,
233603
(
2004
).
4.
T.
Yoshie
,
A.
Scherer
,
J.
Hendrickson
,
G.
Khitrova
,
H. M.
Gibbs
,
G.
Rupper
,
C.
Ell
,
O. B.
Shchekin
, and
D. G.
Deppe
, “
Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity
,”
Nature
432
,
200
(
2004
).
5.
R.
Chikkaraddy
et al., “
Single-molecule strong coupling at room temperature in plasmonic nanocavities
,”
Nature
535
,
127
130
(
2016
).
6.
J.
Bellessa
,
C.
Bonnand
,
J. C.
Plenet
, and
J.
Mugnier
, “
Strong coupling between surface plasmons and excitons in an organic semiconductor
,”
Phys. Rev. Lett.
93
,
036404
(
2004
).
7.
G.
Zengin
,
M.
Wersäll
,
T. J.
Nilsson
,
S.
Antosiewicz
,
M.
Kall
, and
T.
Shegai
, “
Realizing strong light-matter interactions between single-nanoparticle plasmons and molecular excitons at ambient conditions
,”
Phys. Rev. Lett.
114
,
157401
(
2015
).
8.
A. E.
Schlather
,
N.
Large
,
A. S.
Urban
,
P.
Nordlander
, and
N. J.
Halas
, “
Near-field mediated plexcitonic coupling and giant Rabi splitting in individual metallic dimers
,”
Nano Lett.
13
,
3281
(
2013
).
9.
N.
Vats
,
S.
John
, and
K.
Busch
, “
Theory of fluorescence in photonic crystals
,”
Phys. Rev. A
65
,
043808
(
2002
).
10.
M.
Otten
,
R. A.
Shah
,
N. F.
Scherer
,
M.
Min
,
M.
Pelton
, and
S. K.
Gray
, “
Entanglement of two, three, or four plasmonically coupled quantum dots
,”
Phys. Rev. B
92
,
125432
(
2015
).
11.
D.
Kottilil
,
M.
Gupta
,
K.
Tomar
,
F.
Zhou
,
C.
Vijayan
,
P. K.
Bharadwaj
, and
W.
Ji
, “
Cost-effective realization of multimode exciton–polaritons in single-crystalline microplates of a layered metal–organic framework
,”
ACS Appl. Mater. Interfaces.
11
,
7288
7295
(
2019
).
12.
M.
Jeannin
et al., “
Absorption engineering in an ultrasubwavelength quantum system
,”
Nano Lett.
20
,
4430
4436
(
2020
).
13.
J.
Xavier
,
D.
Yu
,
C.
Jones
,
E.
Zossimova
, and
F.
Vollmer
, “
Quantum nanophotonic and nanoplasmonic sensing: Towards quantum optical bioscience laboratories on chip
,”
Nanophotonics
10
,
1387
1435
(
2021
).
14.
H.
Groß
,
J. M.
Hamm
,
T.
Tufarelli
,
O.
Hess
, and
B.
Hecht
, “
Near-field strong coupling of single quantum dots
,”
Sci. Adv.
4
,
eaar4906
(
2018
).
15.
M.
Pelton
,
S. D.
Storm
, and
H.
Leng
, “
Strong coupling of emitters to single plasmonic nanoparticles: Exciton-induced transparency and Rabi splitting
,”
Nanoscale
11
,
14540
14552
(
2019
).
16.
M.
Kumar
,
J.
Dey
,
M. S.
Verma
, and
M.
Chandra
, “
Nanoscale plasmon–exciton interaction: The role of radiation damping and mode-volume in determining coupling strength
,”
Nanoscale
12
,
11612
11618
(
2020
).
17.
D. E.
Chang
,
A. S.
Sørensen
,
P. R.
Hemmer
, and
M. D.
Lukin
, “
Strong coupling of single emitters to surface plasmons
,”
Phys. Rev. B
76
,
035420
(
2007
).
18.
C.
Van Vlack
,
P. T.
Kristensen
, and
S.
Hughes
, “
Spontaneous emission spectra and quantum light-matter interactions from a strongly coupled quantum dot metal-nanoparticle system
,”
Phys. Rev. B
85
,
075303
(
2012
).
19.
A.
Delga
,
J.
Feist
,
J.
Bravo-Abad
, and
F. J.
Garcia-Vidal
, “
Quantum emitters near a metal nanoparticle: Strong coupling and quenching
,”
Phys. Rev. Lett.
112
,
253601
(
2014
).
20.
K.
Jain
and
M.
Venkatapathi
, “
Strong coupling of an emitter with absorbing matter: A regime for enhancement of light emission
,”
Phys. Rev. Appl.
11
,
054002
(
2019
).
21.
R.
Dutta
,
K.
Jain
,
M.
Venkatapathi
, and
J. K.
Basu
, “
Large emission enhancement and emergence of strong coupling with plasmons in nanoassemblies: Role of quantum interactions and finite emitter size
,”
Phys. Rev. B
100
,
155413
(
2019
).
22.
M.
Haridas
and
J. K.
Basu
, “
Controlled photoluminescence from self-assembled semiconductor–metal quantum dot hybrid array films
,”
Nanotechnol.
21
,
415202
(
2010
).
23.
M.
Haridas
,
J. K.
Basu
,
D. J.
Gosztola
, and
G. P.
Wiederrecht
, “
Photoluminescence spectroscopy and lifetime measurements from self-assembled semiconductor-metal nanoparticle hybrid arrays
,”
Appl. Phys. Lett.
97
,
189
(
2010
).
24.
K. A.
Kang
,
J.
Wang
,
J. B.
Jasinski
, and
S.
Achilefu
, “
Fluorescence manipulation by gold nanoparticles: From complete quenching to extensive enhancement
,”
J. Nanobiotechnol.
9
,
16
(
2011
).
25.
M.
Haridas
,
J. K.
Basu
,
A. K.
Tiwari
, and
M.
Venkatapathi
, “
Photoluminescence decay rate engineering of CdSe quantum dots in ensemble arrays embedded with gold nano-antennae
,”
J. Appl. Phys.
114
,
064305
(
2013
).
26.
F.
Fujimoto
and
K.-i.
Komaki
, “
Plasma oscillations excited by a fast electron in a metallic particle
,”
J. Phys. Soc. Jpn.
25
,
1679
1687
(
1968
).
27.
U.
Kreibig
and
M.
Vollmer
,
Optical Properties of Metal Clusters
(
Springer
,
1995
).
28.
J. A.
Scholl
,
A. L.
Koh
, and
J. A.
Dionne
, “
Quantum plasmon resonances of individual metallic nanoparticles
,”
Nature
483
,
421
427
(
2012
).
29.
G. S.
Agarwal
and
S. V.
O’Neil
, “
Effect of hydrodynamic dispersion of the metal on surface plasmons and surface-enhanced phenomena in spherical geometries
,”
Phys. Rev. B
28
,
487
493
(
1983
).
30.
V. M.
Agranovich
and
V.
Ginzburg
,
Crystal Optics with Spatial Dispersion, and Excitons
(
Springer
,
1984
).
31.
P. T.
Leung
, “
Decay of molecules at spherical surfaces: Nonlocal effects
,”
Phys. Rev. B
42
,
7622
7625
(
1990
).
32.
G. C.
Schatz
,
M. A.
Young
, and
R. P.
Van Duyne
, “Electromagnetic mechanism of SERS,” in Surface-Enhance Raman Scattering (Springer, 2006), pp. 19–45.
33.
M.
Moskovits
, “
Persistent misconceptions regarding SERS
,”
Phys. Chem. Chem. Phys.
15
,
5301
(
2013
).
34.
K.
Kneipp
, “
Chemical contribution to SERS enhancement: An experimental study on a series of polymethine dyes on silver nanoaggregates
,”
J. Phys. Chem. C
120
,
21076
(
2016
).
35.
S.
Heeg
,
N. S.
Mueller
,
S.
Wasserroth
,
P.
Kusch
, and
S.
Reich
, “
Experimental tests of surface-enhanced raman scattering: Moving beyond the electromagnetic enhancement theory
,”
J. Raman Spectrosc.
52
,
310
322
(
2021
).
36.
A.
Gonzalez-Tudela
,
F. J.
Rodríguez
,
L.
Quiroga
, and
C.
Tejedor
, “
Dissipative dynamics of a solid-state qubit coupled to surface plasmons: From non-Markov to Markov regimes
,”
Phys. Rev. B
82
,
115334
(
2010
).
37.
K. H.
Madsen
,
S.
Ates
,
T.
Lund-Hansen
,
A.
Löffler
,
S.
Reitzenstein
,
A.
Forchel
, and
P.
Lodahl
, “
Observation of non-Markovian dynamics of a single quantum dot in a micropillar cavity
,”
Phys. Rev. Lett.
106
,
233601
(
2011
).
38.
G.
Agarwal
,
Quantum Optics
(
Cambridge University Press
,
2013
).
39.
K.
Jain
and
M.
Venkatapathi
, “
Radiative decay of an emitter due to non-Markovian interaction with dissipating matter
,”
J. Phys.: Condens. Matter
34
,
265302
(
2022
).
40.
M.
Macovei
,
J.
Evers
,
G.-x.
Li
, and
C. H.
Keitel
, “
Strong-field spatial interference in a tailored electromagnetic bath
,”
Phys. Rev. Lett.
98
,
043602
(
2007
).
41.
V.
Shatokhin
,
C.
Müller
, and
A.
Buchleitner
, “
Coherent inelastic backscattering of intense laser light by cold atoms
,”
Phys. Rev. Lett.
94
,
043603
(
2005
).
42.
A.
Safari
,
R.
Fickler
,
E.
Giese
,
O. S.
Magaña-Loaiza
,
R. W.
Boyd
, and
I.
De Leon
, “
Measurement of the photon-plasmon coupling phase shift
,”
Phys. Rev. Lett.
122
,
133601
(
2019
).
43.
A. A.
Svidzinsky
,
J.
Chang
, and
M. O.
Scully
, “
Cooperative spontaneous emission of N atoms: Many-body eigenstates, the effect of virtual Lamb shift processes, and analogy with radiation of N classical oscillators
,”
Phys. Rev. A
81
,
053821
(
2010
).
44.
R.
Wiegner
,
J.
Von Zanthier
, and
G. S.
Agarwal
, “
Quantum-interference-initiated superradiant and subradiant emission from entangled atoms
,”
Phys. Rev. A
84
,
023805
(
2011
).
45.
L.
Jin
,
J.
Evers
, and
M.
Macovei
, “
Photon scattering from strongly driven atomic ensembles
,”
Phys. Rev. A
84
,
043812
(
2011
).
46.
V. N.
Pustovit
and
T. V.
Shahbazyan
, “
Plasmon-mediated superradiance near metal nanostructures
,”
Phys. Rev. B
82
,
075429
(
2010
).
47.
M.
Venkatapathi
, “
Collective eigenstates of emission in an N-entity heterostructure and the evaluation of its Green tensors and self-energy components
,”
J. Opt. Soc. Am. B
31
,
3153
(
2014
).
48.
D. S.
Citrin
, “
Coherent excitation transport in metal nanoparticle chains
,”
Nano. Lett.
4
,
1561
1565
(
2004
).
49.
J.
Tignon
,
P.
Voisin
,
C.
Delalande
,
M.
Voos
,
R.
Houdré
,
U.
Oesterle
, and
R. P.
Stanley
, “
From Fermi’s golden rule to the vacuum Rabi splitting: Magnetopolaritons in a semiconductor optical microcavity
,”
Phys. Rev. Lett.
74
,
3967
(
1995
).
50.
V.
Debierre
,
T.
Durt
,
A.
Nicolet
, and
F.
Zolla
, “
Spontaneous light emission by atomic hydrogen: Fermi’s golden rule without cheating
,”
Phys. Lett. A
379
,
2577
(
2015
).
51.
A.
Schülzgen
,
R.
Binder
,
M.
Donovan
,
M.
Lindberg
,
K.
Wundke
,
H.
Gibbs
,
G.
Khitrova
, and
N.
Peyghambarian
, “
Direct observation of excitonic Rabi oscillations in semiconductors
,”
Phys. Rev. Lett.
82
,
2346
(
1999
).
52.
G. S.
Agarwal
, “
Vacuum-field Rabi oscillations of atoms in a cavity
,”
J. Opt. Soc. Am. B
2
,
480
485
(
1985
).
53.
H.
Kamada
,
H.
Gotoh
,
J.
Temmyo
,
T.
Takagahara
, and
H.
Ando
, “
Exciton Rabi oscillation in a single quantum dot
,”
Phys. Rev. Lett.
87
,
246401
(
2001
).
54.
F.
Alpeggiani
,
S.
D’Agostino
, and
L. C.
Andreani
, “
Surface plasmons and strong light-matter coupling in metallic nanoshells
,”
Phys. Rev. B
86
,
035421
(
2012
).
55.
E. M.
Purcell
and
C. R.
Pennypacker
, “
Scattering and absorption of light by nonspherical dielectric grains
,”
Astrophys. J.
186
,
705
714
(
1973
).
56.
B. T.
Draine
and
P. J.
Flatau
, “
Discrete-dipole approximation for scattering calculations
,”
J. Opt. Soc. Am. A
11
,
1491
1499
(
1994
).
You do not currently have access to this content.