Wafer-scale thin films of hexagonal boron nitride have exceptional thermal and mechanical properties, which harness the potential use of these materials in two-dimensional electronic, device applications. Along with unavoidable defects, grains, and wrinkles, which develop during the growth process, underlying substrates influence the physical and mechanical properties of these films. Understanding the interactions of these large-scale films with different substrates is, thus, important for the implementation of this 2D system in device fabrication. MOVPE-grown 2 and 30 nm hBN/sapphire films of size 2 in. diameter are delaminated chemically and transferred on quartz, SiO2/Si, and sapphire substrates. The structural characteristics of these films are investigated by employing Raman spectroscopy. Our results suggest that not only the roughness but also the height modulation at the surface of the substrates play a pivotal role in determining substrate-mediated mechanical strain inhomogeneity in these films. The statistical analysis of the spectral parameters provides us with the overall characteristics of the films. Furthermore, a Stark difference in the thermal evolution of strain in these films depending on substrate materials is observed. It has been demonstrated that not only the differential thermal expansion coefficient of the substrates and the films, but also slippage of the latter during the thermal treatment determines the net strain in the films. The role of the slippage is significantly higher in 2 nm films than in 30 nm films. We believe that the observations provide crucial information on the structural characteristics of the substrate-coupled wafer-scale hBN films for their future use in technology.

1.
K. S.
Novoselov
,
A.
Mishchenko
,
A.
Carvalho
, and
A. H.
Castro Neto
,
Science
353
,
aac9439
(
2016
).
2.
C. R.
Dean
,
A. F.
Young
,
I.
Meric
,
C.
Lee
,
L.
Wang
,
S.
Sorgenfrei
,
K.
Watanabe
,
T.
Taniguchi
,
P.
Kim
,
K. L.
Shepard
, and
J.
Hone
,
Nat. Nanotechnol.
5
,
722
726
(
2010
).
3.
Q. H.
Wang
,
Z.
Jin
,
K. K.
Kim
,
A. J.
Hilmer
,
G. L. C.
Paulus
,
C.-J.
Shih
,
M.-H.
Ham
,
J. D.
Sanchez-Yamagishi
,
K.
Watanabe
,
T.
Taniguchi
,
J.
Kong
,
P.
Jarillo-Herrero
, and
M. S.
Strano
,
Nat. Chem.
4
,
724
732
(
2012
).
4.
J.-H.
Chen
,
C.
Jang
,
S.
Xiao
,
M.
Ishigami
, and
M. S.
Fuhrer
,
Nat. Nanotechnol.
3
,
206
209
(
2008
).
5.
Y.
Zhang
,
V. W.
Brar
,
C.
Girit
,
A.
Zettl
, and
M. F.
Crommie
,
Nat. Phys.
5
,
722
726
(
2009
).
6.
A.
Matković
,
M.
Chhikara
,
M.
Milićević
,
U.
Ralević
,
B.
Vasić
,
D.
Jovanović
,
M. R.
Belić
,
G.
Bratina
, and
R.
Gajić
,
J. Appl. Phys.
117
,
015305
(
2015
).
7.
D.
Liu
,
X.-Q.
Yan
,
H.-W.
Guo
,
Z.-B.
Liu
,
W.-Y.
Zhou
, and
J.-G.
Tian
,
J. Appl. Phys.
128
,
043101
(
2020
).
8.
M.
Buscema
,
G. A.
Steele
,
H. S. J.
van der Zant
, and
A.
Castellanos-Gomez
,
Nano Res.
7
,
561
571
(
2014
).
9.
L.
Su
,
Y.
Zhang
,
Y.
Yu
, and
L.
Cao
,
Nanoscale
6
,
4920
4927
(
2014
).
10.
K. I.
Bolotin
,
K. J.
Sikes
,
Z.
Jiang
,
M.
Klima
,
G.
Fudenberg
,
J.
Hone
,
P.
Kim
, and
H. L.
Stormer
,
Solid State Commun.
146
,
351
355
(
2008
).
11.
Z. A. H.
Goodwin
,
V.
Vitale
,
F.
Corsetti
,
D. K.
Efetov
,
A. A.
Mostofi
, and
J.
Lischner
,
Phys. Rev. B
101
,
165110
(
2020
).
12.
B.
He
,
M.
Qiu
,
M. F.
Yuen
, and
W. J.
Zhang
,
Appl. Phys. Lett.
105
,
012104
(
2014
).
13.
Z.
Liu
,
Y.
Gong
,
W.
Zhou
,
L.
Ma
,
J.
Yu
,
J. C.
Idrobo
,
J.
Jung
,
A. H.
MacDonald
,
R.
Vajtai
,
J.
Lou
, and
P. M.
Ajayan
,
Nat. Commun.
4
,
2541
(
2013
).
14.
Q.
Cai
,
D.
Scullion
,
W.
Gan
,
A.
Falin
,
S.
Zhang
,
K.
Watanabe
,
T.
Taniguchi
,
Y.
Chen
,
E. J. G.
Santos
, and
L. H.
Li
,
Sci. Adv.
5
,
eaav0129
(
2019
).
15.
S.
Fratini
and
F.
Guinea
,
Phys. Rev. B
77
,
195415
(
2008
).
16.
A. C.
Ferrari
and
D. M.
Basko
,
Nat. Nanotechnol.
8
,
235
246
(
2013
).
17.
T. M. G.
Mohiuddin
,
A.
Lombardo
,
R. R.
Nair
,
A.
Bonetti
,
G.
Savini
,
R.
Jalil
,
N.
Bonini
,
D. M.
Basko
,
C.
Galiotis
,
N.
Marzari
,
K. S.
Novoselov
,
A. K.
Geim
, and
A. C.
Ferrari
,
Phys. Rev. B
79
,
205433
(
2009
).
18.
I.
Shlimak
,
A.
Butenko
,
E.
Kogan
, and
M.
Kaveh
,
J. Appl. Phys.
126
,
194302
(
2019
).
19.
X. F.
Yue
,
Y. Y.
Wang
,
Y.
Zhao
,
J.
Jiang
,
K.
Yu
,
Y.
Liang
,
B.
Zhong
,
S. T.
Ren
,
R. X.
Gao
, and
M. Q.
Zou
,
J. Appl. Phys.
127
,
104301
(
2020
).
20.
K.
Bera
,
D.
Chugh
,
A.
Patra
,
H. H.
Tan
,
C.
Jagadish
, and
A.
Roy
,
Solid State Commun.
310
,
113847
(
2020
).
21.
C.
Song
,
F.
Fan
,
N.
Xuan
,
S.
Huang
,
C.
Wang
,
G.
Zhang
,
F.
Wang
,
Q.
Xing
,
Y.
Lei
,
Z.
Sun
,
H.
Wu
, and
H.
Yan
,
Phys. Rev. B
99
,
195414
(
2019
).
22.
U.
Lee
,
Y.
Han
,
S.
Lee
,
J. S.
Kim
,
Y. H.
Lee
,
U. J.
Kim
, and
H.
Son
,
ACS Nano
14
,
919
926
(
2020
).
23.
J. T.
Mlack
,
P.
Masih Das
,
G.
Danda
,
Y.-C.
Chou
,
C. H.
Naylor
,
Z.
Lin
,
N. P.
López
,
T.
Zhang
,
M.
Terrones
,
A. T. C.
Johnson
, and
M.
Drndić
,
Sci. Rep.
7
,
43037
(
2017
).
24.
K.
Li
and
W.
Wang
,
J. Cryst. Growth
540
,
125645
(
2020
).
25.
E.
Blundo
,
A.
Surrente
,
D.
Spirito
,
G.
Pettinari
,
T.
Yildirim
,
C. A.
Chavarin
,
L.
Baldassarre
,
M.
Felici
, and
A.
Polimeni
,
Nano Lett.
22
,
1525
1533
(
2022
).
26.
D.
Chugh
,
J.
Wong-Leung
,
L.
Li
,
M.
Lysevych
,
H. H.
Tan
, and
C.
Jagadish
,
2D Mater.
5
,
045018
(
2018
).
27.
X.
Li
,
S.
Sundaram
,
Y.
El Gmili
,
T.
Ayari
,
R.
Puybaret
,
G.
Patriarche
,
P. L.
Voss
,
J. P.
Salvestrini
, and
A.
Ougazzaden
,
Cryst. Growth Des.
16
,
3409
3415
(
2016
).
28.
S.
Nakhaie
,
M.
Heilmann
,
T.
Krause
,
M.
Hanke
, and
J. M. J.
Lopes
,
J. Appl. Phys.
125
,
115301
(
2019
).
29.
J.
Han
,
J.-Y.
Lee
,
H.
Kwon
, and
J.-S.
Yeo
,
Nanotechnology
25
,
145604
(
2014
).
30.
N. V.
Proscia
,
H.
Jayakumar
,
X.
Ge
,
G.
Lopez-Morales
,
Z.
Shotan
,
W.
Zhou
,
C. A.
Meriles
, and
V. M.
Menon
,
Nanophotonics
9
,
2937
2944
(
2020
).
31.
D.
Chugh
,
C.
Jagadish
, and
H.
Tan
,
Adv. Mater. Technol.
4
,
1900220
(
2019
).
32.
K.
Bera
,
A.
Roy
,
D.
Chugh
,
J.
Wong-Leung
,
H.
Hoe Tan
, and
C.
Jagadish
,
Nanotechnology
32
,
075702
(
2021
).
33.
G.
Cassabois
,
P.
Valvin
, and
B.
Gil
,
Nat. Photonics
10
,
262
266
(
2016
).
34.
Y.
Fujimoto
and
S.
Saito
,
Phys. Rev. B
93
,
045402
(
2016
).
35.
A.
Falin
,
Q.
Cai
,
E. J. G.
Santos
,
D.
Scullion
,
D.
Qian
,
R.
Zhang
,
Z.
Yang
,
S.
Huang
,
K.
Watanabe
,
T.
Taniguchi
,
M. R.
Barnett
,
Y.
Chen
,
R. S.
Ruoff
, and
L. H.
Li
,
Nat. Commun.
8
,
15815
(
2017
).
36.
L.
Xiong
and
Y.
Gao
,
Physica E
54
,
78
85
(
2013
).
37.
Q.
Wang
,
Y.
Li
,
B.
Bai
,
W.
Mao
,
Z.
Wang
, and
N.
Ren
,
RSC Adv.
4
,
55087
55093
(
2014
).
38.
W.
Gao
and
R.
Huang
,
J. Phys. D: Appl. Phys.
44
,
452001
(
2011
).
39.
W.
Gao
,
P.
Xiao
,
G.
Henkelman
,
K. M.
Liechti
, and
R.
Huang
,
J. Phys. D: Appl. Phys.
47
,
255301
(
2014
).
40.
Q.
Cai
,
A.
Du
,
G.
Gao
,
S.
Mateti
,
B. C. C.
Cowie
,
D.
Qian
,
S.
Zhang
,
Y.
Lu
,
L.
Fu
,
T.
Taniguchi
,
S.
Huang
,
Y.
Chen
,
R. S.
Ruoff
, and
L. H.
Li
,
Adv. Funct. Mater.
26
,
8202
8210
(
2016
).
41.
A. A.
Maradudin
and
P.
Mazur
,
Phys. Rev. B
22
,
1677
1686
(
1980
).
42.
J. E.
Lee
,
G.
Ahn
,
J.
Shim
,
Y. S.
Lee
, and
S.
Ryu
,
Nat. Commun.
3
,
1024
(
2012
).
43.
S.
Kanakaraju
,
A. K.
Sood
, and
S.
Mohad
,
Curr. Sci.
74
,
322
327
(
1998
).
44.
M.
Sharma
,
S.
Rani
,
D. K.
Pathak
,
R.
Bhatia
,
R.
Kumar
, and
I.
Sameera
,
Carbon
184
,
437
444
(
2021
).
45.
D.
Yoon
,
Y.-W.
Son
, and
H.
Cheong
,
Nano Lett.
11
,
3227
3231
(
2011
).
46.
M.
Balkanski
,
R. F.
Wallis
, and
E.
Haro
,
Phys. Rev. B
28
,
1928
1934
(
1983
).
47.
W.
Pan
,
J.
Xiao
,
J.
Zhu
,
C.
Yu
,
G.
Zhang
,
Z.
Ni
,
K.
Watanabe
,
T.
Taniguchi
,
Y.
Shi
, and
X.
Wang
,
Sci. Rep.
2
,
893
(
2012
).
48.
Q.
Cai
,
D.
Scullion
,
A.
Falin
,
K.
Watanabe
,
T.
Taniguchi
,
Y.
Chen
,
E. J. G.
Santos
, and
L. H.
Li
,
Nanoscale
9
,
3059
3067
(
2017
).
49.
R.
Cuscó
,
B.
Gil
,
G.
Cassabois
, and
L.
Artús
,
Phys. Rev. B
94
,
155435
(
2016
).
50.
M. S.
Tivanov
,
E. A.
Kolesov
,
A. G.
Praneuski
,
O. V.
Korolik
,
A. M.
Saad
,
I. V.
Komissarov
, and
N. G.
Kovalchuk
,
J. Mater. Sci.: Mater. Electron.
27
,
8879
8883
(
2016
).
51.
C.
Androulidakis
,
E. N.
Koukaras
,
M.
Poss
,
K.
Papagelis
,
C.
Galiotis
, and
S.
Tawfick
,
Phys. Rev. B
97
,
241414(R)
(
2018
).
52.
A. I.
Oliva
,
J. M.
Lugo
,
R. A.
Gurubel-Gonzalez
,
R. J.
Centeno
,
J. E.
Corona
, and
F.
Avilés
,
Thin Solid Films
623
,
84
89
(
2017
).
53.
L. B.
Freund
and
S.
Suresh
,
Thin Film Materials Stress, Defect Formation and Surface Evolution
(
Cambridge University Press
,
2004
).
54.
T. H. K.
Barron
,
J. F.
Collins
,
T. W.
Smith
, and
G. K.
White
,
J. Phys. C: Solid State Phys.
15
,
4311
4326
(
1982
).

Supplementary Material

You do not currently have access to this content.