Impedance spectroscopy experiments are able to reveal the fundamental charge transport properties of a wide variety of complex disordered and nano-structured materials provided that appropriate modeling tools are used. In this paper, we present a numerical simulation-based approach to model the dynamical conductivity of networks formed by self-assembled metal nanoparticles. Inter-particle nano-resistance and nano-capacitance are implemented at the nano-scale assuming inter-particle charge transfer and accumulation mechanisms that can be adapted depending on the nature of the nano-particles and the surrounding medium. The actual positions and spatial arrangements of the nanoparticles within the network are taken into consideration, allowing the attributes of percolating conducting routes to be extracted, classified, and compared in terms of path conductance and statistical distribution of path lengths. Our findings are contrasted to those obtained using analytic models, which are commonly used, but rely on strong assumptions about the electric properties of the conducting paths. We address these assumptions and show that in the case of weakly disordered systems, there is a general agreement between numerical simulations and analytic modeling-based approaches. In the case of disordered networks where the nano-particle size and position fluctuations are included, we show that the path length distribution is frequency-dependent and can differ significantly from the lognormal distribution usually assumed in the analytic models. The impedance of individual pathways may be extracted from the numerical simulations; we discovered that the conductance and susceptance of a specific path are frequency-dependent and inversely proportional to the path length only in ordered networks. Strong scattering of conductance values is caused by disorder effects. The developed numerical approach is generic and applies to most nano-devices where charge transport relies on percolation; it allows to bridge the gap between the nano-scale and micro-scale electric characteristics and, thus, permits a deeper understanding of the charge transport properties of nano-structured materials.

1.
J. S.
Steckel
,
P.
Snee
,
S.
Coe-Sullivan
,
J. P.
Zimmer
,
J. E.
Halpert
,
P.
Anikeeva
,
L.-A.
Kim
,
V.
Bulovic
, and
M. G.
Bawendi
, “
Color-saturated green-emitting QD-LEDs
,”
Angew. Chem., Int. Ed.
45
,
5796
(
2006
).
2.
J. E.
Millstone
,
S. J.
Hurst
,
G. S.
Métraux
,
J. I.
Cutler
, and
C. A.
Mirkin
, “
Colloidal gold and silver triangular nanoprisms
,”
Small
5
,
646
(
2009
).
3.
M. V.
Jarosz
,
V. J.
Porter
,
B. R.
Fisher
,
M. A.
Kastner
, and
M. G.
Bawendi
, “
Photoconductivity studies of treated CdSe quantum dot films exhibiting increased exciton ionization efficiency
,”
Phys. Rev. B
70
,
195327
(
2004
).
4.
H.
Nakanishi
,
K. J.
Bishop
,
B.
Kowalczyk
,
A.
Nitzan
,
E. A.
Weiss
,
K. V.
Tretiakov
,
M. M.
Apodaca
,
R.
Klajn
,
J. F.
Stoddart
, and
B. A.
Grzybowski
, “
Photoconductance and inverse photoconductance in films of functionalized metal nanoparticles
,”
Nature
460
,
371
(
2009
).
5.
A. G.
Hunt
, “
Ac hopping conduction: Perspective from percolation theory
,”
Philos. Mag. B
81
,
875
(
2001
).
6.
S.
Capaccioli
,
M.
Lucchesi
,
P. A.
Rolla
, and
G.
Ruggeri
, “
Dielectric response analysis of a conducting polymer dominated by the hopping charge transport
,”
J. Phys.: Condens. Matter
10
,
5595
(
1998
).
7.
J. C.
Dyre
and
T. B.
Schrøder
, “
Universality of Ac conduction in disordered solids
,”
Rev. Mod. Phys.
72
,
873
(
2000
).
8.
A. K.
Jonscher
, “
A new understanding of the dielectric relaxation of solids
,”
J. Mater. Sci.
16
,
2037
(
1981
).
9.
A. K.
Jonscher
, “
The ‘universal’ dielectric response
,”
Nature
267
,
673
(
1977
).
10.
F.
Yakuphanoglu
,
I. S.
Yahia
,
B. F.
Senkal
,
G. B.
Sakr
, and
W. A.
Farooq
, “
Impedance spectroscopy properties of polypyrrole doped with boric acid
,”
Synth. Met.
161
,
817
(
2011
).
11.
A. N.
Papathanassiou
,
I.
Sakellis
, and
J.
Grammatikakis
, “
Universal frequency-dependent Ac conductivity of conducting polymer networks
,”
Appl. Phys. Lett.
91
,
122911
(
2007
).
12.
C.
Cramer
,
S.
Brunklaus
,
E.
Ratai
, and
Y.
Gao
, “
New mixed alkali effect in the Ac conductivity of ion-conducting glasses
,”
Phys. Rev. Lett.
91
,
266601
(
2003
).
13.
B.
Louati
,
M.
Gargouri
,
K.
Guidara
, and
T.
Mhiri
, “
AC electrical properties of the mixed crystal (NH4)3H(SO4)1.42(SeO4)0.58
,”
J. Phys. Chem. Solids
66
,
762
(
2005
).
14.
R. H.
Chen
,
R. Y.
Chang
, and
S. C.
Shern
, “
Dielectric and AC ionic conductivity investigations in K3H(SeO4)2 single crystal
,”
J. Phys. Chem. Solids
63
,
2069
(
2002
).
15.
A. N.
Papathanassiou
, “
Novel feature of the universal power Law dispersion of the Ac conductivity in disordered matter
,”
J. Non-Cryst. Solids
352
,
5444
(
2006
).
16.
A. N.
Papathanassiou
,
J.
Grammatikakis
,
I.
Sakellis
,
S.
Sakkopoulos
,
E.
Vitoratos
, and
E.
Dalas
, “
Low frequency dielectric relaxation phenomena in conducting polypyrrole and conducting polypyrrole-zeolite composites
,”
J. Appl. Phys.
96
,
3883
(
2004
).
17.
A. N.
Papathanassiou
,
J.
Grammatikakis
,
I.
Sakellis
,
S.
Sakkopoulos
,
E.
Vitoratos
, and
E.
Dalas
, “
Hopping charge transport mechanisms in conducting polypyrrole: Studying the thermal degradation of the dielectric relaxation
,”
Appl. Phys. Lett.
87
,
154107
(
2005
).
18.
C.
Liang
,
J.
Gest
,
G.
Leroy
, and
J.-C.
Carru
, “
Dielectric and conductivity properties of composite polyaniline/polyurethane network
,”
J. Appl. Phys.
114
,
124106
(
2013
).
19.
C.
Grimaldi
,
P.
Ryser
, and
S.
Strässler
, “
Anisotropic random resistor networks: A model for piezoresistive response of thick-film resistors
,”
J. Appl. Phys.
92
,
1981
(
2002
).
20.
R.
Kawakami Harrop Galvao
,
K. H.
Kienitz
,
S.
Hadjiloucas
,
G. C.
Walker
,
J. W.
Bowen
,
S.
Figueredo Carreiro Soares
, and
M. C.
Ugulino Araujo
, “
Multivariate analysis of the dielectric response of materials modeled using networks of resistors and capacitors
,”
IEEE Trans. Dielectr. Electr. Insul.
20
,
995
(
2013
).
21.
E.
Arnold
, “
Computer simulation of conductivity and Hall effect in inhomogeneous inversion layers
,”
Surface Sci.
113
,
239
243
(
1982
).
22.
R. S.
Popović
, “
Numerical analysis of MOS magnetic field sensors
,”
Solid-State Electron.
28
,
711
(
1985
).
23.
M.
Ortolano
and
L.
Callegaro
, “
Circuit models and SPICE macro-models for quantum Hall effect devices
,”
Meas. Sci. Technol.
arXiv.1501.03288.
24.
D. P.
Almond
,
C. J.
Budd
,
M. A.
Freitag
,
G. W.
Hunt
,
N. J.
McCullen
, and
N. D.
Smith
, “
The origin of power-law emergent scaling in large binary networks
,”
Phys. A
392
,
1004
(
2013
).
25.
R.
Bouamrane
and
D. P.
Almond
, “
The emergent scaling phenomenon and the dielectric properties of random resistor–capacitor networks
,”
J. Phys. Condens. Matter
15
,
4089
(
2003
).
26.
R. K. H.
Galvao
,
S.
Hadjiloucas
,
K. H.
Kienitz
,
H. M.
Paiva
, and
R. J. M.
Afonso
, “
Fractional order modeling of large three-dimensional RC networks
,”
IEEE Trans. Circuits Syst. Regul. Pap.
60
,
624
(
2013
).
27.
H.
Nesser
,
J.
Grisolia
,
A.
Mlayah
,
T.
Alnasser
,
D.
Lagarde
,
B.
Viallet
, and
L.
Ressier
, “
Plasmonic photocapacitance of self-assembled gold colloidal nanoparticle monolayers
,”
Mater. Today Nano
4
,
38
(
2018
).
28.
H.
Moreira
,
J.
Grisolia
,
N. M.
Sangeetha
,
N.
Decorde
,
C.
Farcau
,
B.
Viallet
,
K.
Chen
,
G.
Viau
, and
L.
Ressier
, “
Electron transport in gold colloidal nanoparticle-based strain gauges
,”
Nanotechnology
24
,
095701
(
2013
).
29.
J.
Grisolia
,
N.
Decorde
,
M.
Gauvin
,
N. M.
Sangeetha
,
B.
Viallet
, and
L.
Ressier
, “
Electron transport within transparent assemblies of tin-doped indium oxide colloidal nanocrystals
,”
Nanotechnology
26
,
335702
(
2015
).
30.
M. M. A.
Yajadda
,
K.-H.
Müller
, and
K.
Ostrikov
, “
Effect of Coulomb blockade, gold resistance, and thermal expansion on the electrical resistance of ultrathin gold films
,”
Phys. Rev. B
84
,
235431
(
2011
).
31.
A. J.
Quinn
,
P.
Beecher
,
D.
Iacopino
,
L.
Floyd
,
G.
De Marzi
,
E. V.
Shevchenko
,
H.
Weller
, and
G.
Redmond
, “
Manipulating the charging energy of nanocrystal arrays
,”
Small
1
,
613
(
2005
).
32.
N.
Decorde
,
N. M.
Sangeetha
,
B.
Viallet
,
G.
Viau
,
J.
Grisolia
,
A.
Coati
,
A.
Vlad
,
Y.
Garreau
, and
L.
Ressier
, “
Small angle X-ray scattering coupled with in situ electromechanical probing of nanoparticle-based resistive strain gauges
,”
Nanoscale
6
,
15107
(
2014
).
33.
H.
Nesser
,
J.
Grisolia
,
T.
Alnasser
,
B.
Viallet
, and
L.
Ressier
, “
Towards wireless highly sensitive capacitive strain sensors based on gold colloidal nanoparticles
,”
Nanoscale
10
,
10479
(
2018
).
34.
Scilab
, “Copyright© 1989–2005: INRIA ENPC” and “Scilab is a Trademark of INRIA,” www.scilab.org (n.d.).
35.
P.
Lagonotte
and
Y.
Eichenlaub
,
Réseaux Électrocinétiques et Algèbre Linéaire
(Notions Fondamentales) J3eA–5 (2006).
36.
L.
Merle
,
G.
Manai
,
A.
Pham
,
S.
Lecommandoux
,
P.
Demont
,
C.
Bonduelle
,
S.
Tricard
,
A.
Mlayah
, and
J.
Grisolia
, “
Enhanced dielectric relaxation in self-organized layers of polypeptides coupled to platinum nanoparticles: Temperature dependence and effect of bias voltage
,”
J. Phys. Chem. C
125
,
22643
(
2021
).
37.
A.
Bourgine
,
J.
Grisolia
,
M.
Vallet
,
D.
Benoit
,
Y. L.
Friec
,
V.
Caubet-Hilloutou
, and
A.
Claverie
, “
On the charge transport mechanisms in Ge-rich GeSbTe alloys
,”
Solid-State Electron.
172
,
107871
(
2020
).
38.
D.
Stauffer
and
A.
Aharony
,
Introduction to Percolation Theory
, 2nd ed. (
Taylor & Francis
,
1992
).
39.
I. W.
Essam
,
D. S.
Gaunt
, and
A. J.
Guttmann
, “
Percolation theory at the critical dimension
,”
J. Phys. A: Math. Gen.
11
,
1983
(
1978
).

Supplementary Material

You do not currently have access to this content.