SrxBa1xBiO3 (0x<0.5) films were fabricated from solution-phase precursors using flow-limited field-injection electrostatic spraying to investigate the predicted topological properties of BaBiO3, an oxide perovskite. The films were analyzed via x-ray diffraction, optical conductivity, and Raman spectroscopy. The bandgaps measured by optical absorption spectroscopy were in line with the predicted value of SrxBa1xBiO3 for x<0.25, decreasing with an increase in x to reach zero at x=0.348. This suggests that BaBiO3 may have topological order and that, upon appropriate doping, it may be used as a topological insulator or superconductor in quantum-computing devices. This work may open up new avenues toward engineering of topological insulators with precise and reproducible control of stoichiometry, obviating extreme deposition temperatures or vacuum processing.

1.
L.
Fu
,
C. L.
Kane
, and
E. J.
Mele
,
Phys. Rev. Lett.
98
,
106803
(
2007
).
2.
M. Z.
Hasan
and
C. L.
Kane
,
Rev. Mod. Phys.
82
,
3045
(
2010
).
3.
A.
Bansil
,
H.
Lin
, and
T.
Das
,
Rev. Mod. Phys.
88
,
021004
(
2016
).
4.
B.
Yan
,
M.
Jansen
, and
C.
Felser
,
Nat. Phys.
9
,
709
(
2013
).
5.
R. L.
Bouwmeester
and
A.
Brinkman
,
Rev. Phys.
6
,
100056
(
2021
).
6.
L. F.
Mattheiss
,
E. M.
Gyorgy
, and
D. W.
Johnson
,
Phys. Rev. B
37
,
3745
(
1988
).
7.
A.
Sleight
,
J.
Gillson
, and
P.
Bierstedt
,
Solid State Commun.
17
,
27
(
1975
).
8.
C.
Bougerol-Chaillout
,
P.
Bordet
,
S.
Kazakov
,
J.
Pshirkov
,
S.
Putilin
,
E.
Antipov
, and
M.
Nunez-Regueiro
,
Physica C
341–348
,
1813
(
2000
).
9.
D.
Cox
and
A.
Sleight
,
Solid State Commun.
19
,
969
(
1976
).
10.
A. W.
Sleight
,
Physica C
514
,
152
(
2015
).
11.
S.
Tajima
,
S.
Uchida
,
A.
Masaki
,
H.
Takagi
,
K.
Kitazawa
,
S.
Tanaka
, and
A.
Katsui
, “Optical study of the metal-semiconductor transition InBaPb1xBixO3,”
Phys. Rev. B
32, 6032 (1985).
12.
V.
Vildosola
,
F.
Güller
, and
A. M.
Llois
,
Phys. Rev. Lett.
110
,
206805
(
2013
).
13.
C.
Ferreyra
,
F.
Marchini
,
P.
Granell
,
F.
Golmar
,
C.
Albornoz
,
F. J.
Williams
,
A. G.
Leyva
, and
D.
Rubi
,
Thin Solid Films
612
,
369
(
2016
).
14.
G.
Kim
,
M.
Neumann
,
M.
Kim
,
M. D.
Le
,
T. D.
Kang
, and
T. W.
Noh
,
Phys. Rev. Lett.
115
,
226402
(
2015
).
15.
A.
Gozar
,
G.
Logvenov
,
V. Y.
Butko
, and
I.
Bozovic
,
Phys. Rev. B: Condens. Matter
75
,
201402
(
2007
).
16.
K.
Inumaru
,
H.
Miyata
, and
S.
Yamanaka
,
Phys. Rev. B: Condens. Matter
78
,
132507
(
2008
).
17.
B.
Khamari
and
B. R. K.
Nanda
,
Mater. Res. Express
6
,
066309
(
2019
).
18.
S.-T.
Pi
,
H.
Wang
,
J.
Kim
,
R.
Wu
,
Y.-K.
Wang
, and
C.-K.
Lu
,
J. Phys. Chem. Lett.
8
,
332
(
2017
).
19.
O. I.
Malyi
,
G. M.
Dalpian
,
X.-G.
Zhao
,
Z.
Wang
, and
A.
Zunger
,
Mater. Today
32
,
35
(
2020
).
20.
M.
Talha
and
Y. H.
Jeong
,
J. Korean Phys. Soc.
76
,
215
(
2020
).
21.
H.
Choi
,
S.
Park
,
Y.
Yang
,
H.
Kang
,
K. K.
Kim
,
M. Y.
Sung
, and
H. G.
Jang
,
J. Mater. Res.
17
,
1888
(
2002
).
22.
A.
Banerjee
,
O.
Deb
,
K.
Majhi
,
R.
Ganesan
,
D.
Sen
, and
P. S.
Anil Kumar
,
Nanoscale
9
,
6755
(
2017
).
23.
E.
Kotta
,
L.
Miao
,
Y.
Xu
,
S.
Alexander Breitweiser
,
C.
Jozwiak
,
A.
Bostwick
,
E.
Rotenberg
,
W.
Zhang
,
W.
Wu
,
T.
Suzuki
,
J.
Checkelsky
, and
L.
Andrew Wray
,
Nat. Phys.
16
,
285
(
2020
).
24.
Y.
Xu
,
J.
Chiu
,
L.
Miao
,
H.
He
,
Z.
Alpichshev
,
A.
Kapitulnik
,
R. R.
Biswas
, and
L. A.
Wray
,
Nat. Commun.
8
,
14081
(
2017
).
25.
J.
Ge
,
W.-J.
Yin
, and
Y.
Yan
,
Chem. Mater.
30
,
1017
(
2018
).
26.
W.
Gu
,
R.
Singh
, and
K.
Kim
,
Appl. Phys. Lett.
87
,
084107
(
2005
).
27.
W.
Gu
,
P. E.
Heil
,
H.
Choi
, and
K.
Kim
,
J. Phys. D: Appl. Phys.
43
,
492001
(
2010
).
28.
K.
Kim
and
R. J.
Turnbull
,
J. Appl. Phys.
47
,
1964
(
1976
).
29.
K.
Kim
and
C.
Ryu
,
Nanostruct. Mater.
4
,
597
(
1994
).
30.
H.
Kang
,
S.
Park
,
K.
Kim
,
M. Y.
Sung
, and
H.
Choi
,
Electrochem. Solid-State Lett.
7
,
F70
(
2004
).
31.
H.
Kang
,
S.
Park
,
K.
Kim
,
M. Y.
Sung
, and
H.
Choi
,
Electrochem. Solid-State Lett.
7
,
F77
(
2004
).
32.
R. E.
Vesto
,
R.
Wilson
,
H.
Choi
, and
K.
Kim
,
AIP Adv.
10
,
095211
(
2020
).
33.
L.
Fu
and
C. L.
Kane
,
Phys. Rev. Lett.
100
,
096407
(
2008
).
34.
J.
Shiogai
,
T.
Chida
,
K.
Hashimoto
,
K.
Fujiwara
,
T.
Sasaki
, and
A.
Tsukazaki
,
Phys. Rev. B
101
,
125125
(
2020
).
35.
X.
Zhang
,
L. B.
Abdalla
,
Q.
Liu
, and
A.
Zunger
,
Adv. Funct. Mater.
27
,
1701266
(
2017
).
36.
K.
Momma
and
F.
Izumi
,
J. Appl. Crystallogr.
44
,
1272
(
2011
).
37.
P. Y.
Yu
and
M.
Cardona
, in Fundamentals of Semiconductors: Physics and Materials Properties, edited by P. Y. Yu and M. Cardona (Springer, Berlin, 1996), pp. 243–343.
38.
F.
Li
,
B. A.
Davidson
,
R.
Sutarto
,
H.
Shin
,
C.
Liu
,
I.
Elfimov
,
K.
Foyevtsova
,
F.
He
,
G. A.
Sawatzky
, and
K.
Zou
,
Phys. Rev. Mater.
3
,
100802
(
2019
).
39.
H.
Sato
,
S.
Tajima
,
H.
Takagi
, and
S.
Uchida
,
Nature
338
,
241
(
1989
).
40.
B. H.
Toby
and
R. B.
Von Dreele
,
J. Appl. Crystallogr.
46
,
544
(
2013
).
You do not currently have access to this content.