Electromagnetically induced transparency (EIT) is a phenomenon that can provide strong and robust interfacing between optical signals and quantum coherence of electronic spins. In its archetypical form, mainly explored with atomic media, it uses a (near-)homogeneous ensemble of three-level systems, in which two low-energy spin-1/2 levels are coupled to a common optically excited state. We investigate the implementation of EIT with c-axis divacancy color centers in silicon carbide. While this material has attractive properties for quantum device technologies with near-IR optics, implementing EIT is complicated by the inhomogeneous broadening of the optical transitions throughout the ensemble and the presence of multiple ground-state levels. These may lead to darkening of the ensemble upon resonant optical excitation. Here, we show that EIT can be established with high visibility also in this material platform upon careful design of the measurement geometry. Comparison of our experimental results with a model based on the Lindblad equations indicates that we can create coherences between different sets of two levels all-optically in these systems, with potential impact for RF-free quantum sensing applications. Our work provides an understanding of EIT in multi-level systems with significant inhomogeneities, and our considerations are valid for a wide array of defects in semiconductors.

1.
M.
Fleischhauer
,
A.
Imamoglu
, and
J. P.
Marangos
, “
Electromagnetically induced transparency: Optics in coherent media
,”
Rev. Mod. Phys.
77
,
633
(
2005
).
2.
A. B.
Matsko
,
O.
Kocharovskaya
,
Y.
Rostovtsev
,
G. R.
Welch
,
A. S.
Zibrov
, and
M. O.
Scully
, “
Slow, ultraslow, stored, and frozen light
,”
Adv. Atom. Mol. Opt. Phys.
46
,
191
242
(
2001
).
3.
A.
Nagel
,
L.
Graf
,
A.
Naumov
,
E.
Mariotti
,
V.
Biancalana
,
D.
Meschede
, and
R.
Wynands
, “
Experimental realization of coherent dark-state magnetometers
,”
Europhys. Lett.
44
,
31
(
1998
).
4.
V.
Yudin
,
A.
Taichenachev
,
Y.
Dudin
,
V.
Velichansky
,
A.
Zibrov
, and
S.
Zibrov
, “
Vector magnetometry based on electromagnetically induced transparency in linearly polarized light
,”
Phys. Rev. A
82
,
033807
(
2010
).
5.
J.
Sedlacek
,
A.
Schwettmann
,
H.
Kübler
, and
J.
Shaffer
, “
Atom-based vector microwave electrometry using rubidium Rydberg atoms in a vapor cell
,”
Phys. Rev. Lett.
111
,
063001
(
2013
).
6.
C. L.
Holloway
,
M. T.
Simons
,
J. A.
Gordon
,
A.
Dienstfrey
,
D. A.
Anderson
, and
G.
Raithel
, “
Electric field metrology for si traceability: Systematic measurement uncertainties in electromagnetically induced transparency in atomic vapor
,”
J. Appl. Phys.
121
,
233106
(
2017
).
7.
Z.
Vafapour
, “
Near infrared biosensor based on classical electromagnetically induced reflectance (cl-eir) in a planar complementary metamaterial
,”
Opt. Commun.
387
,
1
11
(
2017
).
8.
H.
Clevenson
,
M. E.
Trusheim
,
C.
Teale
,
T.
Schröder
,
D.
Braje
, and
D.
Englund
, “
Broadband magnetometry and temperature sensing with a light-trapping diamond waveguide
,”
Nat. Phys.
11
,
393
(
2015
).
9.
J.
Vanier
, “
Atomic clocks based on coherent population trapping: A review
,”
Appl. Phys. B
81
,
421
442
(
2005
).
10.
S.
Harris
and
L. V.
Hau
, “
Nonlinear optics at low light levels
,”
Phys. Rev. Lett.
82
,
4611
(
1999
).
11.
A. V.
Gorshkov
,
J.
Otterbach
,
M.
Fleischhauer
,
T.
Pohl
, and
M. D.
Lukin
, “
Photon-photon interactions via Rydberg blockade
,”
Phys. Rev. Lett.
107
,
133602
(
2011
).
12.
T.
Peyronel
,
O.
Firstenberg
,
Q.-Y.
Liang
,
S.
Hofferberth
,
A. V.
Gorshkov
,
T.
Pohl
,
M. D.
Lukin
, and
V.
Vuletić
, “
Quantum nonlinear optics with single photons enabled by strongly interacting atoms
,”
Nature
488
,
57
60
(
2012
).
13.
O.
Firstenberg
,
T.
Peyronel
,
Q.-Y.
Liang
,
A. V.
Gorshkov
,
M. D.
Lukin
, and
V.
Vuletić
, “
Attractive photons in a quantum nonlinear medium
,”
Nature
502
,
71
75
(
2013
).
14.
D. E.
Chang
,
V.
Vuletić
, and
M. D.
Lukin
, “
Quantum nonlinear optics—Photon by photon
,”
Nat. Photonics
8
,
685
(
2014
).
15.
T.
Ozawa
,
H. M.
Price
,
A.
Amo
,
N.
Goldman
,
M.
Hafezi
,
L.
Lu
,
M. C.
Rechtsman
,
D.
Schuster
,
J.
Simon
,
O.
Zilberberg
 et al, “
Topological photonics
,”
Rev. Mod. Phys.
91
,
015006
(
2019
).
16.
L.-M.
Duan
,
M.
Lukin
,
J. I.
Cirac
, and
P.
Zoller
, “
Long-distance quantum communication with atomic ensembles and linear optics
,”
Nature
414
,
413
418
(
2001
).
17.
R. W.
Boyd
,
D. J.
Gauthier
,
A. L.
Gaeta
, and
A. E.
Willner
, “
Maximum time delay achievable on propagation through a slow-light medium
,”
Phys. Rev. A
71
,
023801
(
2005
).
18.
J. B.
Khurgin
, “
Optical buffers based on slow light in electromagnetically induced transparent media and coupled resonator structures: Comparative analysis
,”
J. Opt. Soc. Am.
22
,
1062
1074
(
2005
).
19.
H. J.
Kimble
, “
The quantum internet
,”
Nature
453
,
1023
(
2008
).
20.
A. I.
Lvovsky
,
B. C.
Sanders
, and
W.
Tittel
, “
Optical quantum memory
,”
Nat. Photonics
3
,
706
(
2009
).
21.
I.
Novikova
,
R. L.
Walsworth
, and
Y.
Xiao
, “
Electromagnetically induced transparency-based slow and stored light in warm atoms
,”
Laser Photonics Rev.
6
,
333
353
(
2012
).
22.
H.
Gorniaczyk
,
C.
Tresp
,
J.
Schmidt
,
H.
Fedder
, and
S.
Hofferberth
, “
Single-photon transistor mediated by interstate Rydberg interactions
,”
Phys. Rev. Lett.
113
,
053601
(
2014
).
23.
M. D.
Eisaman
,
A.
André
,
F.
Massou
,
M.
Fleischhauer
,
A. S.
Zibrov
, and
M. D.
Lukin
, “
Electromagnetically induced transparency with tunable single-photon pulses
,”
Nature
438
,
837
841
(
2005
).
24.
V. M.
Acosta
,
K.
Jensen
,
C.
Santori
,
D.
Budker
, and
R. G.
Beausoleil
, “
Electromagnetically induced transparency in a diamond spin ensemble enables all-optical electromagnetic field sensing
,”
Phys. Rev. Lett.
110
,
213605
(
2013
).
25.
M.
Lukin
, “
Colloquium: Trapping and manipulating photon states in atomic ensembles
,”
Rev. Mod. Phys.
75
,
457
(
2003
).
26.
J.
Gea-Banacloche
,
Y.-Q.
Li
,
S.-Z.
Jin
, and
M.
Xiao
, “
Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: Theory and experiment
,”
Phys. Rev. A
51
,
576
(
1995
).
27.
G.
Morigi
,
J.
Eschner
, and
C. H.
Keitel
, “
Ground state laser cooling using electromagnetically induced transparency
,”
Phys. Rev. Lett.
85
,
4458
(
2000
).
28.
J.
Ma
,
P.
Shi
,
X.
Qian
,
Y.
Shang
, and
Y.
Ji
, “
Optical spin noise spectra of Rb atomic gas with homogeneous and inhomogeneous broadening
,”
Sci. Rep.
7
,
1
7
(
2017
).
29.
A.
Turukhin
,
V.
Sudarshanam
,
M.
Shahriar
,
J.
Musser
,
B.
Ham
, and
P.
Hemmer
, “
Observation of ultraslow and stored light pulses in a solid
,”
Phys. Rev. Lett.
88
,
023602
(
2002
).
30.
M. P.
Hedges
,
J. J.
Longdell
,
Y.
Li
, and
M. J.
Sellars
, “
Efficient quantum memory for light
,”
Nature
465
,
1052
1056
(
2010
).
31.
M.
Sladkov
,
A.
Chaubal
,
M.
Bakker
,
A.
Onur
,
D.
Reuter
,
A.
Wieck
, and
C.
Van Der Wal
, “
Electromagnetically induced transparency with an ensemble of donor-bound electron spins in a semiconductor
,”
Phys. Rev. B
82
,
121308(R)
(
2010
).
32.
M. W.
Doherty
,
N. B.
Manson
,
P.
Delaney
,
F.
Jelezko
,
J.
Wrachtrup
, and
L. C.
Hollenberg
, “
The nitrogen-vacancy colour centre in diamond
,”
Phys. Rep.
528
,
1
45
(
2013
).
33.
W. F.
Koehl
,
B. B.
Buckley
,
F. J.
Heremans
,
G.
Calusine
, and
D. D.
Awschalom
, “
Room temperature coherent control of defect spin qubits in silicon carbide
,”
Nature
479
,
84
87
(
2011
).
34.
C. P.
Anderson
,
E. O.
Glen
,
C.
Zeledon
,
A.
Bourassa
,
Y.
Jin
,
Y.
Zhu
,
C.
Vorwerk
,
A. L.
Crook
,
H.
Abe
,
J.
Ul-Hassan
,
T.
Ohshima
,
N. T.
Son
,
G.
Galli
, and
D. D.
Awschalom
, “Five-second coherence of a single spin with single-shot readout in silicon carbide,” arXiv:2110.01590 [quant-ph] (2021).
35.
H.
Seo
,
A. L.
Falk
,
P. V.
Klimov
,
K. C.
Miao
,
G.
Galli
, and
D. D.
Awschalom
, “
Quantum decoherence dynamics of divacancy spins in silicon carbide
,”
Nat. Commun.
7
,
12935
(
2016
).
36.
C. F.
de las Casas
,
D. J.
Christle
,
J.
Ul Hassan
,
T.
Ohshima
,
N. T.
Son
, and
D. D.
Awschalom
, “
Stark tuning and electrical charge state control of single divacancies in silicon carbide
,”
Appl. Phys. Lett.
111
,
262403
(
2017
).
37.
O. V.
Zwier
,
D.
O’Shea
,
A. R.
Onur
, and
C. H.
van der Wal
, “
All–optical coherent population trapping with defect spin ensembles in silicon carbide
,”
Sci. Rep.
5
,
10931
(
2015
).
38.
C. P.
Anderson
,
A.
Bourassa
,
K. C.
Miao
,
G.
Wolfowicz
,
P. J.
Mintun
,
A. L.
Crook
,
H.
Abe
,
J.
Ul Hassan
,
N. T.
Son
,
T.
Ohshima
, and
D. D.
Awschalom
, “
Electrical and optical control of single spins integrated in scalable semiconductor devices
,”
Science
366
,
1225
(
2019
).
39.
A. L.
Falk
,
P. V.
Klimov
,
B. B.
Buckley
,
V.
Ivády
,
I. A.
Abrikosov
,
G.
Calusine
,
W. F.
Koehl
,
Á.
Gali
, and
D. D.
Awschalom
, “
Electrically and mechanically tunable electron spins in silicon carbide color centers
,”
Phys. Rev. Lett.
112
,
187601
(
2014
).
40.
S. J.
Whiteley
,
G.
Wolfowicz
,
C. P.
Anderson
,
A.
Bourassa
,
H.
Ma
,
M.
Ye
,
G.
Koolstra
,
K. J.
Satzinger
,
M. V.
Holt
,
F. J.
Heremans
 et al, “
Spin–phonon interactions in silicon carbide addressed by gaussian acoustics
,”
Nat. Phys.
15
,
490
495
(
2019
).
41.
P. V.
Klimov
,
A. L.
Falk
,
B. B.
Buckley
, and
D. D.
Awschalom
, “
Electrically driven spin resonance in silicon carbide color centers
,”
Phys. Rev. Lett.
112
,
087601
(
2014
).
42.
F.
Waldermann
,
P.
Olivero
,
J.
Nunn
,
K.
Surmacz
,
Z.
Wang
,
D.
Jaksch
,
R.
Taylor
,
I.
Walmsley
,
M.
Draganski
,
P.
Reichart
 et al, “
Creating diamond color centers for quantum optical applications
,”
Diam. Relat. Mater.
16
,
1887
1895
(
2007
).
43.
G.
Calusine
,
A.
Politi
, and
D. D.
Awschalom
, “
Cavity-enhanced measurements of defect spins in silicon carbide
,”
Phys. Rev. Appl.
6
,
014019
(
2016
).
44.
J. L.
Zhang
,
H.
Ishiwata
,
T. M.
Babinec
,
M.
Radulaski
,
K.
Muüller
,
K. G.
Lagoudakis
,
C.
Dory
,
J.
Dahl
,
R.
Edgington
,
V.
Soulière
 et al, “
Hybrid group IV nanophotonic structures incorporating diamond silicon-vacancy color centers
,”
Nano Lett.
16
,
212
217
(
2016
).
45.
L.
Spindlberger
,
A.
Csóré
,
G.
Thiering
,
S.
Putz
,
R.
Karhu
,
J. U.
Hassan
,
N.
Son
,
T.
Fromherz
,
A.
Gali
, and
M.
Trupke
, “
Optical properties of vanadium in 4H silicon carbide for quantum technology
,”
Phys. Rev. Appl.
12
,
014015
(
2019
).
46.
G.
Wolfowicz
,
C. P.
Anderson
,
B.
Diler
,
O. G.
Poluektov
,
F. J.
Heremans
, and
D. D.
Awschalom
, “
Vanadium spin qubits as telecom quantum emitters in silicon carbide
,”
Sci. Adv.
6
,
eaaz1192
(
2020
).
47.
O. V.
Zwier
, Zernike Institute PhD thesis series, ISSN 1570-1530 (University of Groningen, 2016).
48.
G.
Wolfowicz
,
C. P.
Anderson
,
A. L.
Yeats
,
S. J.
Whiteley
,
J.
Niklas
,
O. G.
Poluektov
,
F. J.
Heremans
, and
D. D.
Awschalom
, “
Optical charge state control of spin defects in 4H-SiC
,”
Nat. Commun.
8
,
1876
(
2017
).
49.
B.
Magnusson
,
N. T.
Son
,
A.
Csóré
,
A.
Gällström
,
T.
Ohshima
,
A.
Gali
, and
I. G.
Ivanov
, “
Excitation properties of the divacancy in 4h-SiC
,”
Phys. Rev. B
98
,
195202
(
2018
).

Supplementary Material

You do not currently have access to this content.