We report here on the properties of topological crystalline insulator Pb0.5Sn0.5Te epitaxial films doped with bismuth at levels from 0% (undoped) to 0.15%. The undoped film exhibits a p-type character due to metal vacancies. As the doping level rises, the hole concentration reduces. At a level of 0.06%, the electrical character inverts to n-type and the electron density continues to increase for rising doping level up to 0.15%. This result demonstrates an effective extrinsic n-type doping of Pb0.5Sn0.5Te crystal with bismuth due to substitutional Bi atoms in metal sites. High-resolution x-ray diffraction and reciprocal space mapping show that fully relaxed high-quality films are obtained. A pristine (111) film surface is revealed after removal of the Te cover layer using a method combining Ar+ sputtering and thermal desorption. Angle-resolved photoemission spectroscopy (ARPES) data acquired at 30 K near the Γ¯ point of the undoped film surface show a parabolic-like dispersion of the bulk valence band close to the Fermi level. Now, the ARPES data for a sample doped with 0.1% of Bi reveal that the chemical potential is shifted by 40 meV upwards in the direction of the conduction band. The ARPES results also indicate that there might be a discrepancy between surface and bulk chemical potential in the doped sample. This divergence suggests that Te atoms diffuse into the surface during the thermal process to desorb the protective layer, inverting the surface to p-type.

1.
J. O.
Dimmock
,
I.
Melngailis
, and
A. J.
Strauss
,
Phys. Rev. Lett.
16
,
1193
1196
(
1966
).
2.
G.
Nimtz
,
B.
Schlicht
, and
R.
Dornhaus
,
Narrow-Gap Semiconductors
(
Springer
,
New York
,
1983
), p.
309
.
3.
H.
Zogg
,
Proc. SPIE
3629
,
52
62
(
1999
).
4.
M.
Tacke
,
Philos. Trans. R. Soc., A
359
,
547
566
(
2001
).
5.
A. J.
Strauss
,
Trans. Metall. Soc. AIME
242
,
354
(
1968
).
6.
E.
Abramof
,
S. O.
Ferreira
,
P. H. O.
Rappl
,
H.
Closs
, and
I. N.
Bandeira
,
J. Appl. Phys.
82
,
2405
2410
(
1997
).
8.
T. H.
Hsieh
,
H.
Lin
,
J.
Liu
,
W.
Duan
,
A.
Bansil
, and
L.
Fu
,
Nat. Commun.
3
,
982
(
2012
).
9.
Y.
Tanaka
,
Z.
Ren
,
T.
Sato
,
K.
Nakayama
,
S.
Souma
,
T.
Takahashi
,
K.
Segawa
, and
Y.
Ando
,
Nat. Phys.
8
,
800
(
2012
).
10.
S. Y.
Xu
,
C.
Liu
,
N.
Alidoust
,
M.
Neupane
,
D.
Qian
,
I.
Belopolski
,
J. D.
Denlinger
,
U. J.
Wang
,
H.
Lin
,
L. A.
Wray
,
G.
Landolt
,
B.
Slomski
,
J. H.
Dil
,
A.
Marcinkova
,
E.
Morosan
,
Q.
Gibson
,
R.
Sankar
,
F. C.
Chou
,
R. J.
Cava
,
A.
Bansil
, and
M. Z.
Hasan
,
Nat. Commun.
3
,
1192
(
2012
).
11.
Y.
Tanaka
,
T.
Shoman
,
K.
Nakayama
,
S.
Souma
,
T.
Sato
,
T.
Takahashi
,
M.
Novak
,
K.
Segawa
, and
Y.
Ando
,
Phys. Rev. B
88
,
235126
(
2013
).
12.
C.
Yan
,
J.
Liu
,
Y.
Zang
,
J.
Wang
,
Z.
Wang
,
P.
Wang
,
Z.-D.
Zhang
,
L.
Wang
,
X.
Ma
,
S.
Ji
,
K.
He
,
L.
Fu
,
W.
Duan
,
Q.-K.
Xue
, and
X.
Chen
,
Phys. Rev. Lett.
112
,
186801
(
2014
).
13.
J.
Liu
,
T. H.
Hsieh
,
P.
Wei
,
W.
Duan
,
J.
Moodera
, and
L.
Fu
,
Nat. Mater.
13
,
178
183
(
2014
).
14.
B. A.
Assaf
,
T.
Phuphachong
,
V. V.
Volobuev
,
G.
Bauer
,
G.
Springholz
,
L.-A.
de Vaulchier
, and
Y.
Guldner
,
npj Quantum Mater.
2
,
26
(
2017
).
15.
K. K.
Tikuišis
,
J.
Wyzula
,
L.
Ohnoutek
,
P.
Cejpek
,
K.
Uhlírová
,
M.
Hakl
,
C.
Faugeras
,
K.
Výborný
,
A.
Ishida
,
M.
Veis
, and
M.
Orlita
,
Phys. Rev. B
103
,
155304
(
2021
).
16.
A. V.
Galeeva
,
D. A.
Belov
,
A. S.
Kazakov
,
A. V.
Ikonnikov
,
A. I.
Artamkin
,
L. I.
Ryabova
,
V. V.
Volobuev
,
G.
Springholz
,
S. N.
Danilov
, and
D. R.
Khokhlov
,
Nanomaterials
11
,
3207
(
2021
).
17.
S. G.
Egorova
,
V. I.
Chernichkin
,
L. I.
Ryabova
,
E. P.
Skipetrov
,
L. V.
Yashina
,
S. N.
Danilov
,
S. D.
Ganichev
, and
D. R.
Khokhlov
,
Sci. Rep.
5
,
11540
(
2015
).
18.
V. V.
Volobuev
,
P. S.
Mandal
,
M.
Galicka
,
O.
Caha
,
J.
Sánchez-Barriga
,
D.
Di Sante
,
A.
Varykhalov
,
A.
Khiar
,
S.
Picozzi
,
G.
Bauer
,
P.
Kacman
,
R.
Buczko
,
O.
Rader
, and
G.
Springholz
,
Adv. Mater.
29
,
1604185
(
2017
).
19.
B. A.
Volkov
,
L. I.
Ryabova
, and
D. R.
Khokhlov
,
Phys. Usp.
45
,
819
846
(
2002
).
20.
R. F.
Bis
and
J. R.
Dixon
,
J. Appl. Phys.
40
,
1918
1921
(
1969
).
21.
S. O.
Ferreira
,
E.
Abramof
,
P. H. O.
Rappl
,
A. Y.
Ueta
,
H.
Closs
,
C.
Boschetti
,
P.
Motisuke
, and
I. N.
Bandeira
,
J. Appl. Phys.
84
,
3650
3653
(
1998
).
22.
A. K.
Okazaki
,
S.
Wiedmann
,
S.
Pezzini
,
M. L.
Peres
,
P. H. O.
Rappl
, and
E.
Abramof
,
Phys. Rev. B
98
,
195136
(
2018
).
23.
S. O.
Ferreira
,
E.
Abramof
,
P.
Motisuke
,
P. H. O.
Rappl
,
H.
Closs
,
A. Y.
Ueta
,
C.
Boschetti
, and
I. N.
Bandeira
,
J. Appl. Phys.
86
,
7198
7200
(
1999
).
24.
J. R.
Dixon
and
R. F.
Bis
,
Phys. Rev.
176
,
942
949
(
1968
).
25.
C. I.
Fornari
,
P. H. O.
Rappl
,
S. L.
Morelhão
,
T. R. F.
Peixoto
,
H.
Bentmann
,
F.
Reinert
, and
E.
Abramof
,
APL Mater.
4
,
106107
(
2016
).
26.
J.
Dai
,
W.
Wang
,
M.
Brahlek
,
N.
Koirala
,
M.
Salehi
,
S.
Oh
, and
W.
Wu
,
Nano Res.
8
,
1222
(
2015
).
27.
Z.-Y.
Ye
,
H.-X.
Deng
,
H.-Z.
Wu
,
S.-S.
Li
,
S.-H.
Wei
, and
J.-W.
Luo
,
NPJ Comput. Mater.
1
,
15001
(
2015
).
28.
N. J.
Parada
,
Phys. Rev. B
3
,
2042
(
1971
).
29.
A.
Goyal
,
P.
Gorai
,
E. S.
Toberer
, and
V.
Stevanović
,
NPJ Comput. Mater.
3
,
42
(
2017
).

Supplementary Material

You do not currently have access to this content.