High electron mobility transistors are widely used as microwave amplifiers owing to their low microwave noise figure. Electronic noise in these devices is typically modeled by noise sources at the gate and drain. While consensus exists regarding the origin of the gate noise, that of drain noise is a topic of debate. Here, we report a theory of drain noise as a type of partition noise arising from real-space transfer of hot electrons from the channel to the barrier. The theory accounts for the magnitude and dependencies of the drain temperature and suggests strategies to realize devices with lower noise figure.

1.
M. W.
Pospieszalski
, “
Extremely low-noise amplification with cryogenic FETs and HFETs: 1970-2004
,”
IEEE Microwave Mag.
6
(
3
),
62
75
(
2005
).
2.
J. C.
Bardin
,
D. H.
Slichter
, and
D. J.
Reilly
, “
Microwaves in quantum computing
,”
IEEE J. Microwaves
1
(
1
),
403
427
(
2021
).
3.
P.
Krantz
,
M.
Kjaergaard
,
F.
Yan
,
T. P.
Orlando
,
S.
Gustavsson
, and
W. D.
Oliver
, “
A quantum engineer’s guide to superconducting qubits
,”
Appl. Phys. Rev.
6
(
2
),
021318
(
2019
).
4.
T.
Enoki
,
H.
Ito
,
K.
Ikuta
,
Y.
Umeda
, and
Y.
Ishii
, “
0.1-μm InAlAs/InGaAs HEMTs with an InP-recess-etch stopper grown by MOCVD
,”
Microwave Opt. Technol. Lett.
11
(
3
),
135
139
(
1996
).
5.
T.
Saranovac
,
A.
Hambitzer
,
D. C.
Ruiz
,
O.
Ostinelli
, and
C. R.
Bolognesi
, “
Pt gate sink-in process details impact on InP HEMT DC and RF performance
,”
IEEE Trans. Semicond. Manuf.
30
(
4
),
462
467
(
2017
).
6.
A.
Leuther
,
A.
Tessmann
,
H.
Massler
,
R.
Losch
,
M.
Schlechtweg
,
M.
Mikulla
, and
O.
Ambacher
, “35 nm metamorphic HEMT MMIC technology,” in 2008 20th International Conference on Indium Phosphide and Related Materials (IEEE, 2008), pp. 1–4.
7.
N.
Wadefalk
,
A.
Mellberg
,
I.
Angelov
,
M. E.
Barsky
,
S.
Bui
,
E.
Choumas
,
R. W.
Grundbacher
,
E. L.
Kollberg
,
R.
Lai
,
N.
Rorsman
et al., “
Cryogenic wide-band ultra-low-noise IF amplifiers operating at ultra-low dc power
,”
IEEE Trans. Microwave Theory Tech.
51
(
6
),
1705
1711
(
2003
).
8.
R.
Lai
,
X. B.
Mei
,
S.
Sarkozy
,
W.
Yoshida
,
P. H.
Liu
,
J.
Lee
,
M.
Lange
,
V.
Radisic
,
K.
Leong
, and
W.
Deal
, “Sub 50 nm InP HEMT with ft = 586 GHz and amplifier circuit gain at 390 GHz for sub-millimeter wave applications,” in 2010 22nd International Conference on Indium Phosphide and Related Materials (IPRM) (IEEE, 2010), pp. 1–3.
9.
E.
Cha
,
N.
Wadefalk
,
P.
Nilsson
,
J.
Schleeh
,
G.
Moschetti
,
A.
Pourkabirian
,
S.
Tuzi
, and
J.
Grahn
, “
0.3–14 and 16–28 GHz wide-bandwidth cryogenic mmic low-noise amplifiers
,”
IEEE Trans. Microwave Theory Tech.
66
(
11
),
4860
4869
(
2018
).
10.
A.
Leuther
,
A.
Tessmann
,
I.
Kallfass
,
R.
Losch
,
M.
Seelmann-Eggebert
,
N.
Wadefalk
,
F.
Schafer
,
J. D.
Gallego Puyol
,
M.
Schlechtweg
,
M.
Mikulla
et al., “Metamorphic hemt technology for low-noise applications,” in 2009 IEEE International Conference on Indium Phosphide & Related Materials (IEEE, 2009), pp. 188–191.
11.
R.
Lai
,
X. B.
Mei
,
W. R.
Deal
,
W.
Yoshida
,
Y. M.
Kim
,
P. H.
Liu
,
J.
Lee
,
J.
Uyeda
,
V.
Radisic
,
M.
Lange
et al., “Sub 50 nm InP HEMT device with fmax greater than 1 THz,” in 2007 IEEE International Electron Devices Meeting (IEEE, 2007), pp. 609–611.
12.
L.
Liu
,
A. R.
Alt
,
H.
Benedickter
, and
C. R.
Bolognesi
, “
InP-HEMT x-band low-noise amplifier with ultralow 0.6-mW power consumption
,”
IEEE Electron Device Lett.
33
(
2
),
209
211
(
2011
).
13.
E.
Cha
,
N.
Wadefalk
,
G.
Moschetti
,
A.
Pourkabirian
,
J.
Stenarson
, and
J.
Grahn
, “
InP HEMTS for sub-mW cryogenic low-noise amplifiers
,”
IEEE Electron Device Lett.
41
(
7
),
1005
1008
(
2020
).
14.
E.
Cha
,
InP High Electron Mobility Transistors for Cryogenic Low-Noise and Low-Power Amplifiers
(
Chalmers University of Technology
,
2020
).
15.
J.
Schleeh
,
Cryogenic Ultra-Low Noise InP High Electron Mobility Transistors
(
Chalmers University of Technology
,
2013
).
16.
D.
Cuadrado-Calle
,
D.
George
,
G. A.
Fuller
,
K.
Cleary
,
L.
Samoska
,
P.
Kangaslahti
,
J. W.
Kooi
,
M.
Soria
,
M.
Varonen
,
R.
Lai
et al., “
Broadband MMIC LNAs for ALMA band 2+3 with noise temperature below 28 K
,”
IEEE Trans. Microwave Theory Tech.
65
(
5
),
1589
1597
(
2017
).
17.
F.
Heinz
,
F.
Thome
,
A.
Leuther
, and
O.
Ambacher
, “
A 50-nm gate-length metamorphic HEMT technology optimized for cryogenic ultra-low-noise operation
,”
IEEE Trans. Microwave Theory Tech.
69
,
3896
3907
(
2021
).
18.
H.-B.
Jo
,
J.-M.
Baek
,
D.-Y.
Yun
,
S.-W.
Son
,
J.-H.
Lee
,
T.-W.
Kim
,
D.-H.
Kim
,
T.
Tsutsumi
,
H.
Sugiyama
, and
H.
Matsuzaki
, “
Lg = 87 nm InAlAs/InGaAs high-electron-mobility transistors with a gm_max of 3 s/mm and ft of 559 GHz
,”
IEEE. Electron Device Lett.
39
(
11
),
1640
1643
(
2018
).
19.
M. W.
Pospieszalski
, “
Modeling of noise parameters of mesfets and modfets and their frequency and temperature dependence
,”
IEEE Trans. Microwave Theory Tech.
37
(
9
),
1340
1350
(
1989
).
20.
J. J.
Bautista
and
E. M.
Long
, “
Physical temperature of the active region in cryogenically cooled indium phosphide high-electron mobility transistors
,”
IPN Prog. Rep.
42
(
170
),
1
9
(
2007
).
21.
H.
Statz
,
H. A.
Haus
, and
R. A.
Pucel
, “
Noise characteristics of gallium arsenide field-effect transistors
,”
IEEE Trans. Electron Devices
21
(
9
),
549
562
(
1974
).
22.
M. W.
Pospieszalski
, “On the limits of noise performance of field effect transistors,” in 2017 IEEE MTT-S International Microwave Symposium (IMS) (IEEE, 2017), pp. 1953–1956.
23.
T.
González
,
O. M.
Bulashenko
,
J.
Mateos
,
D.
Pardo
,
L.
Reggiani
, and
J. M.
Rubí
, “
Noise suppression due to long-range coulomb interaction: Crossover between diffusive and ballistic transport regimes
,”
Semicond. Sci. Technol.
12
(
8
),
1053
(
1997
).
24.
M. R.
Murti
,
J.
Laskar
,
S.
Nuttinck
,
S.
Yoo
,
A.
Raghavan
,
J. I.
Bergman
,
J.
Bautista
,
R.
Lai
,
R.
Grundbacher
,
M.
Barsky
et al., “
Temperature-dependent small-signal and noise parameter measurements and modeling on InP HEMTs
,”
IEEE Trans. Microwave Theory Tech.
48
(
12
),
2579
2587
(
2000
).
25.
S.
Weinreb
and
J.
Shi
, “
Low noise amplifier with 7-k noise at 1.4 GHz and 25°C
,”
IEEE Trans. Microwave Theory Tech.
69
,
2345
2351
(
2021
).
26.
S.
Munoz
,
J. D.
Gallego
,
J. L.
Sebastian
, and
J. M.
Miranda
, “Drain temperature dependence on ambient temperature for a cryogenic low noise c-band amplifier,” in 1997 27th European Microwave Conference (IEEE, 1997), Vol. 1, pp. 114–118.
27.
M. W.
Pospieszalski
, “On the dependence of fet noise model parameters on ambient temperature,” in 2017 IEEE Radio and Wireless Symposium (RWS) (IEEE, 2017), pp. 159–161.
28.
F.
Heinz
,
F.
Thome
,
A.
Leuther
, and
O.
Ambacher
, “Noise performance of sub-100-nm metamorphic HEMT technologies,” in 2020 IEEE/MTT-S International Microwave Symposium (IMS) (IEEE, 2020), pp. 293–296.
29.
R. A.
Höpfel
,
J.
Shah
,
A. C.
Gossard
, and
W.
Wiegmann
, “
Hot carrier drift velocities in GaAs/AlGaAs multiple quantum well structures
,”
Physica B+ C
134
(
1–3
),
509
513
(
1985
).
30.
J.
Shah
,
A.
Pinczuk
,
H. L.
Störmer
,
A. C.
Gossard
, and
W.
Wiegmann
, “
Hot electrons in modulation-doped GaAs-AlGaAs heterostructures
,”
Appl. Phys. Lett.
44
(
3
),
322
324
(
1984
).
31.
M.
Asche
,
C.
Canali
,
E.
Constant
,
K.
Hess
,
G. J.
Iafrate
,
S.
Komijama
,
T.
Kurosawa
,
T.
Masumi
,
F.
Nava
, and
Y. K.
Pozhela
,
Hot-Electron Transport in Semiconductors
(
Springer Science & Business Media
,
2006
),
Vol. 58
.
32.
J.
Shah
,
A.
Pinczuk
,
A. C.
Gossard
, and
W.
Wiegmann
, “
Energy-loss rates for hot electrons and holes in GaAs quantum wells
,”
Phys. Rev. Lett.
54
(
18
),
2045
(
1985
).
33.
K.
Kash
,
J.
Shah
,
D.
Block
,
A. C.
Gossard
, and
W.
Wiegmann
, “
Picosecond luminescence measurements of hot carrier relaxation in III-V semiconductors using sum frequency generation
,”
Physica B+ C
134
(
1–3
),
189
198
(
1985
).
34.
S. A.
Lyon
, “
Spectroscopy of hot carriers in semiconductors
,”
J. Lumin.
35
(
3
),
121
154
(
1986
).
35.
J.
Shah
, “
Hot electrons and phonons under high intensity photoexcitation of semiconductors
,”
Solid-State Electron.
21
(
1
),
43
50
(
1978
).
36.
R. A.
Höpfel
,
J.
Shah
, and
A. C.
Gossard
, “
Nonequilibrium electron-hole plasma in GaAs quantum wells
,”
Phys. Rev. Lett.
56
(
7
),
765
(
1986
).
37.
W. H.
Knox
,
C.
Hirlimann
,
D. A. B.
Miller
,
J.
Shah
,
D. S.
Chemla
, and
C. V.
Shank
, “
Femtosecond excitation of nonthermal carrier populations in GaAs quantum wells
,”
Phys. Rev. Lett.
56
(
11
),
1191
(
1986
).
38.
J.
Shah
, “
Investigation of hot carrier relaxation with picosecond laser pulses
,”
Le J. Phys. Colloq.
42
(
C7
),
445
(
1981
).
39.
V.
Aninkevičius
,
V.
Bareikis
,
J.
Liberis
,
A.
Matulionis
, and
P.
Sakalas
, “
Comparative analysis of microwave noise in GaAs and AlGaAs/GaAs channels
,”
Solid-State Electron.
36
(
9
),
1339
1343
(
1993
).
40.
A.
Matulionis
,
V.
Aninkevičius
,
J.
Berntgen
,
D.
Gasquet
,
J.
Liberis
, and
I.
Matulionienė
, “
Qw-shape-dependent hot-electron velocity fluctuations in InGaAs-based heterostructures
,”
Phys. Status Solidi B
204
(
1
),
453
455
(
1997
).
41.
R. A.
Höpfel
and
G.
Weimann
, “
Electron heating and free-carrier absorption in GaAs/AlGaAs single heterostructures
,”
Appl. Phys. Lett.
46
(
3
),
291
293
(
1985
).
42.
M. G.
Shorthose
,
J. F.
Ryan
, and
A.
Moseley
, “
Phonon-assisted tunnelling of photoexcited carriers from InGaAs quantum wells in applied electric fields
,”
Solid-State Electron.
32
(
12
),
1449
1453
(
1989
).
43.
J.
Shah
, “
Hot carriers in quasi-2-d polar semiconductors
,”
IEEE J. Quantum Electron.
22
(
9
),
1728
1743
(
1986
).
44.
R. A.
Höpfel
,
J.
Shah
,
D.
Block
, and
A. C.
Gossard
, “
Picosecond time-of-flight measurements of minority electrons in GaAs/AlGaAs quantum well structures
,”
Appl. Phys. Lett.
48
(
2
),
148
150
(
1986
).
45.
B. K.
Ridley
, “
Hot electrons in low-dimensional structures
,”
Rep. Prog. Phys.
54
(
2
),
169
(
1991
).
46.
K.
Hess
,
H.
Morkoc
,
H.
Shichijo
, and
B. G.
Streetman
, “
Negative differential resistance through real-space electron transfer
,”
Appl. Phys. Lett.
35
(
6
),
469
471
(
1979
).
47.
S.
Luryi
,
A.
Kastalsky
,
A. C.
Gossard
, and
R. H.
Hendel
, “
Charge injection transistor based on real-space hot-electron transfer
,”
IEEE Trans. Electron Devices
31
(
6
),
832
839
(
1984
).
48.
A.
Kastalsky
,
S.
Luryi
,
A. C.
Gossard
, and
R.
Hendel
, “
A field-effect transistor with a negative differential resistance
,”
IEEE Electron Device Lett.
5
(
2
),
57
60
(
1984
).
49.
Y. K.
Chen
,
D. C.
Radulescu
,
G. W.
Wang
,
F. E.
Najjar
, and
L. F.
Eastman
, “
Observation of high-frequency high-field instability in GaAs/InGaAs/AlGaAs DH-MODFETs at K band
,”
IEEE Electron Device Lett.
9
(
1
),
1
3
(
1988
).
50.
J.
Laskar
,
J. M.
Bigelow
,
J.-P.
Leburton
, and
J.
Kolodzey
, “
Experimental and theoretical investigation of the dc and high-frequency characteristics of the negative differential resistance in pseudomorphic AlGaAs/InGaAs/GaAs modfets
,”
IEEE Trans. Electron Devices
39
(
2
),
257
263
(
1992
).
51.
P. J.
Price
, “
Intervalley noise
,”
J. Appl. Phys.
31
(
6
),
949
953
(
1960
).
52.
W.
Shockley
,
J. A.
Copeland
, and
R. P.
James
,
Quantum Theory of Atoms, Molecules and the Solid State
(
Academic
,
New York
,
1966
).
53.
M.
Feng
,
D.
Caruth
,
S. K.
Hsia
, and
J. A.
Fendrich
, “Real space transfer noise of gaas p-hemts,” in Compound Semiconductors 1997. Proceedings of the IEEE Twenty-Fourth International Symposium on Compound Semiconductors (IEEE, 1997), pp. 463–466.
54.
A.
Van Die
and
J. I.
Dijkhuis
, “
Thermally activated real-space-transfer noise in pseudomorphic high-electron-mobility transistors
,”
J. Appl. Phys.
74
(
2
),
1143
1150
(
1993
).
55.
J.
Mateos
,
T.
Gonzalez
,
D.
Pardo
,
P.
Tadyszak
,
F.
Danneville
, and
A.
Cappy
, “Influence of real-space transfer on transit time and noise in HEMTs,” in ESSDERC’96: Proceedings of the 26th European Solid State Device Research Conference (IEEE, 1996), pp. 745–748.
56.
J.
Mateos
,
D.
Purdo
,
T.
Gonzilez
,
P.
Takyszak
,
F.
Danneville
, and
A.
Cappy
, “
Influence of al mole fraction on the noise performance of GaAs/Al/sub x/Ga/sub 1-x/As HEMTs
,”
IEEE Trans. Electron Devices
45
(
9
),
2081
2083
(
1998
).
57.
F.
Schwierz
and
J. J.
Liou
,
Modern Microwave Transistors: Theory, Design, and Performance
(
Wiley-interscience
,
2003
).
58.
J.
Mateos
,
T.
González
,
D.
Pardo
,
V.
Hoel
, and
A.
Cappy
, “
Effect of the t-gate on the performance of recessed HEMTs. A Monte Carlo analysis
,”
Semicond. Sci. Technol.
14
(
9
),
864
(
1999
).
59.
K. M.
Van Vliet
,
A.
Friedmann
,
R. J. J.
Zijlstra
,
A.
Gisolf
, and
A.
Van der Ziel
, “
Noise in single injection diodes. I. A survey of methods
,”
J. Appl. Phys.
46
(
4
),
1804
1813
(
1975
).
60.
Z. S.
Gribnikov
,
K.
Hess
, and
G. A.
Kosinovsky
, “
Nonlocal and nonlinear transport in semiconductors: Real-space transfer effects
,”
J. Appl. Phys.
77
(
4
),
1337
1373
(
1995
).
61.
M.
Keever
,
H.
Shichijo
,
K.
Hess
,
S.
Banerjee
,
L.
Witkowski
,
H.
Morkoc
, and
B. G.
Streetman
, “
Measurements of hot-electron conduction and real-space transfer in GaAs-AlxGa1-xAs heterojunction layers
,”
Appl. Phys. Lett.
38
(
1
),
36
38
(
1981
).
62.
T. H.
Glisson
,
J. R.
Hauser
,
M. A.
Littlejohn
,
K.
Hess
,
B. G.
Streetman
, and
H.
Shichijo
, “
Monte Carlo simulation of real-space electron transfer in GaAs-AlGaAs heterostructures
,”
J. Appl. Phys.
51
(
10
),
5445
5449
(
1980
).
63.
Y.-W.
Chen
,
Y.-J.
Chen
,
W.-C.
Hsu
,
R.-T.
Hsu
,
Y.-H.
Wu
, and
Y.-S.
Lin
, “
Enhancement-mode In0.52Al0.48As/In0.6Ga0.4As As tunneling real space transfer high electron mobility transistor
,”
J. Vac. Sci. Technol. B
22
(
3
),
974
976
(
2004
).
64.
M.
Keever
,
K.
Hess
, and
M.
Ludowise
, “
Fast switching and storage in GaAs–Alx Ga1-x As heterojunction layers
,”
IEEE Electron Device Lett.
3
(
10
),
297
300
(
1982
).
65.
D. H.
Park
and
K. F.
Brennan
, “
Monte Carlo simulation of 0.35-mu m gate-length GaAs and InGaAs HEMTs
,”
IEEE Trans. Electron Devices
37
(
3
),
618
628
(
1990
).
66.
H.
Rodilla
,
J.
Schleeh
,
P.
Nilsson
,
N.
Wadefalk
,
J.
Mateos
, and
J.
Grahn
, “
Cryogenic performance of low-noise InP HEMTs: A Monte Carlo study
,”
IEEE Trans. Electron Devices
60
(
5
),
1625
1631
(
2013
).
67.
S. M.
Sze
and
K. K.
Ng
,
Physics of Semiconductor Devices
(
John Wiley & Sons
,
2007
).
68.
“Sentaurus Device User Guide,” Synopsys, Inc., Mountain View, CA (2018).
69.
C.
Kittel
and
H.
Kroemer
,
Thermal Physics
, 2nd ed. (
Freeman
,
1980
), p.
183
.
70.
J.
Schleeh
,
H.
Rodilla
,
N.
Wadefalk
,
P.
Nilsson
, and
J.
Grahn
, “
Characterization and modeling of cryogenic ultralow-noise InP HEMTs
,”
IEEE Trans. Electron Devices
60
(
1
),
206
212
(
2012
).
71.
R. A.
Pucel
,
H. A.
Haus
, and
H.
Statz
, “Signal and noise properties of gallium arsenide microwave field-effect transistors,” in Advances in Electronics and Electron Physics (Elsevier, 1975), Vol. 38, pp. 195–265.
72.
J.
Frey
, “
Effects of intervalley scattering on noise in GaAs and InP field-effect transistors
,”
IEEE Trans. Electron Devices
23
(
12
),
1298
1303
(
1976
).
73.
W.
Baechtold
, “
Noise behavior of GaAs field-effect transistors with short gate lengths
,”
IEEE Trans. Electron Devices
19
(
5
),
674
680
(
1972
).
74.
E. A.
Hendriks
and
R. J. J.
Zijlstra
, “
Diffusion and inter-valley noise in (100) n-channel Si-mosfets from t = 4.2 to 295 K
,”
Solid-State Electron
31
(
2
),
171
180
(
1988
).
75.
K. Y.
Cheng
,
A. Y.
Cho
,
S. B.
Christman
,
T. P.
Pearsall
, and
J. E.
Rowe
, “
Measurement of the γ-l separation in Ga0.47In0.53As by ultraviolet photoemission
,”
Appl. Phys. Lett.
40
(
5
),
423
425
(
1982
).
76.
S. R.
Bahl
,
W. J.
Azzam
, and
J. A.
del Alamo
, “
Strained-insulator In/sub x/Al/sub1-x/As/n/sup+/-In/sub 0.53/Ga/sub 0.47/As heterostructure field-effect transistors
,”
IEEE Trans. Electron Devices
38
(
9
),
1986
1992
(
1991
).
You do not currently have access to this content.