Delaminations, buried defects parallel to the sample surface, reduce the material stiffness and the structure reliability. Photothermal methods, based on exciting the surface by a light beam and analyzing the resulting temperature rise, have been extensively used for detecting delaminations and sizing their depth. However, less attention has been paid to the sizing of the delamination width. In this work, we use modulated photothermal radiometry (PTR) to size the depth and width of narrow delaminations by fitting the theoretical temperature expression to the experimental frequency spectrum of the PTR signal. We have established a detectability limit: for good thermal conductors, submicronic delaminations can be sized down to 10 mm, whereas for thermal insulators, it is difficult to go below 0.5 mm. Experiments on calibrated delaminations confirm these predictions.

1.
K.
Askaripour
and
A.
Zak
,
J. Compos. Sci.
3
,
95
(
2019
).
2.
D. P.
Almond
and
P. M.
Patel
,
Photothermal Science and Techniques
(
Chapman & Hall
,
London
,
1996
).
3.
P.-E.
Nordal
and
S. O.
Kanstad
,
Phys. Scr.
20
,
659
662
(
1979
).
4.
S. O.
Kanstad
and
P.-E.
Nordal
,
Can. J. Phys.
64
,
1155
1164
(
1986
).
5.
X. P. V.
Maldague
,
Theory and Practice of Infrared Technology for Nondestructive Testing
(
John Wiley & Sons
,
New York
,
2001
).
6.
O.
Breitenstein
and
M.
Langenkamp
,
Lock-In Thermography
(
Springer
,
Berlin
,
2003
).
7.
S. M.
Shepard
and
T.
Ahmed
,
Proc. SPIE
3700
,
388
392
(
1999
).
8.
Y. A.
Plotnikov
and
W. P.
Winfree
,
Proc. SPIE
3700
,
26
31
(
1999
).
9.
S. M.
Shepard
,
J. R.
Lhota
,
B. A.
Rubadeux
,
T.
Ahmed
, and
D.
Wang
,
Proc. SPIE
4710
,
531
535
(
2002
).
10.
R.
Mulaveesala
and
S. V.
Ghali
,
Rev. Sci. Instrum.
82
,
054902
(
2011
).
11.
D. L.
Balageas
,
Quant. Infrared Thermogr. J.
9
,
3
32
(
2012
).
12.
Y.
Duan
,
S.
Huebner
,
U.
Hassler
,
A.
Osman
,
C.
Ibarra-Castanedo
, and
X. P. V.
Maldague
,
Infrared Phys. Technol.
60
,
275
280
(
2013
).
13.
C.
Maierhofer
,
M.
Roellig
,
R.
Krankenhagen
, and
P.
Myrach
,
Appl. Opt.
55
,
D76
(
2016
).
14.
J.
Baumann
and
R.
Tilgner
,
J. Appl. Phys.
58
,
1982
1985
(
1985
).
15.
A. C.
Tam
and
H.
Sontag
,
Appl. Phys. Lett.
49
,
1761
1763
(
1986
).
16.
P. M.
Patel
,
D. P.
Almond
, and
H.
Reiter
,
Appl. Phys. B
43
,
9
15
(
1987
).
17.
J. P.
Müller
,
G.
Dell’Avvocato
, and
R.
Krankenhagen
,
NDT&E Int.
116
,
102309
(
2020
).
18.
D.
Maillet
,
S.
André
,
J. C.
Batsale
,
A.
Degiovanni
, and
C.
Moyne
,
Thermal Quadrupoles
(
Wiley
,
New York
,
2000
).
19.
H. S.
Carslaw
and
J. C.
Jaeger
,
Conduction of Heat in Solids
, 2nd ed. (
Oxford University Press
,
Oxford
,
1959
), p.
20
.
20.
A.
Salazar
,
A.
Mendioroz
, and
R.
Fuente
,
Appl. Phys. Lett.
95
,
121905
(
2009
).
21.
A.
Mandelis
,
Diffusion-Wave Fields
(
Springer-Verlag
,
New York
,
2001
), p.
111
.
22.
R.
Santos
and
L. C. M.
Miranda
,
J. Appl. Phys.
52
,
4194
4198
(
1981
).
23.
R.
Fuente
,
E.
Apiñaniz
,
A.
Mendioroz
, and
A.
Salazar
,
J. Appl. Phys.
110
,
033515
(
2011
).
24.
A.
Salazar
and
A.
Oleaga
,
Rev. Sci. Instrum.
83
,
014903
(
2012
).
25.
N. W.
Pech-May
,
A.
Mendioroz
, and
A.
Salazar
,
Rev. Sci. Instrum.
85
,
104902
(
2014
).
26.
J.
Ordonez-Miranda
and
J. J.
Alvarado-Gil
,
Int. J. Thermal Sci.
74
,
208
213
(
2013
).
You do not currently have access to this content.