Although it is well-established that voids profoundly influence the initiation and reaction behaviors of heterogeneous energetic materials such as polymer-bonded explosives (PBX) and propellants, there has been little study of how void location in different constituents in the microstructures of such materials affect the macroscale behavior. Here, we use three-dimensional (3D) mesoscale simulations to study how void placement within the reactive grains vs the polymer binder influences the shock-to-detonation transition in a polymer-bonded explosive. The material studied here has a microstructure comprised of 75% PETN (pentaerythritol tetranitrate) grains and 25% hydroxyl-terminated polybutadiene polymer binder by volume. Porosities up to 10% in the form of spherical voids distributed in both the grains and polymer are considered. An Arrhenius reactive burn relation is used to model the chemical kinetics of the PETN grains under shock loading, thereby resolving the heterogeneous detonation behavior of the PBX. The influence of void location on the shock initiation sensitivity of the material is quantitatively ranked by comparing the predicted run distance to detonation (RDD) for each sample. The analysis includes inherent quantification of uncertainties arising from the stochastic variations in the microstructure morphologies and void distributions by using statistically equivalent microstructure sample sets, leading to probabilistic formulations for the RDD as a function of shock pressure. The calculations reveal that the location of voids in the composite microstructure significantly affects the RDD. Specifically, voids exclusively within the grains cause the PBX to be more sensitive (having shorter RDD) than voids in the polymer binder. Unique probabilistic relationships are derived to map the probability of observing RDD for each void location material case, allowing for prediction of initiation behavior anywhere in the shock pressure–RDD space. These findings agree with trends reported in the literature.

1.
F. P.
Bowden
,
A. D.
Yoffe
, and
G. E.
Hudson
, “
Initiation and growth of explosion in liquids and solids
,”
Am. J. Phys.
20
(
4
),
250
251
(
1952
).
2.
M. A.
Wood
,
M. J.
Cherukara
,
E. M.
Kober
, and
A.
Strachan
, “
Ultrafast chemistry under nonequilibrium conditions and the shock to deflagration transition at the nanoscale
,”
J. Phys. Chem. C
119
(
38
),
22008
22015
(
2015
).
3.
A. W.
Campbell
,
W. C.
Davis
, and
J. R.
Travis
, “
Shock initiation of detonation in liquid explosives
,”
Phys. Fluids
4
(
4
),
498
510
(
1961
).
4.
J. E.
Field
,
G. M.
Swallowe
, and
S. N.
Heavens
, “
Ignition mechanisms of explosives during mechanical deformation
,”
Proc. R. Soc. London A
382
(
1782
),
231
244
(
1982
).
5.
J. E.
Field
, “
Hot spot ignition mechanisms for explosives
,”
Acc. Chem. Res.
25
(
11
),
489
496
(
1992
).
6.
S.
Kim
,
Y.
Wei
,
Y.
Horie
, and
M.
Zhou
, “
Prediction of shock initiation thresholds and ignition probability of polymer-bonded explosives using mesoscale simulations
,”
J. Mech. Phys. Solids
114
,
97
116
(
2018
).
7.
A.
Barua
, “
Mesoscale computational prediction and quantification of thermomechanical ignition behavior of polymer-bonded explosives (PBXs)
,” in
Mechanical Engineering
(
Georgia Institute of Technology
,
Atlanta, GA
,
2013
), p.
264
.
8.
C.
Yarrington
,
R. R.
Wixom
, and
D. L.
Damm
,
Mesoscale Simulations Using Realistic Microstructure and First Principles Equation of State
[
Sandia National Laboratory (SNL-NM)
,
Albuquerque, NM
,
2012
], p.
10
.
9.
M. R.
Baer
, “
Modeling heterogeneous energetic materials at the mesoscale
,”
Thermochim. Acta
384
(
1–2
),
351
367
(
2002
).
10.
M. A.
Wood
,
D. E.
Kittell
,
C. D.
Yarrington
, and
A. P.
Thompson
, “
Multiscale modeling of shock wave localization in porous energetic material
,”
Phys. Rev. B
97
(
1
),
014109
(
2018
).
11.
C.
Miller
,
D. E.
Kittell
,
C. D.
Yarrington
, and
M.
Zhou
, “
Prediction of probabilistic detonation threshold via millimeter-scale microstructure-explicit and void-explicit simulations
,”
Propellants Explos. Pyrotech.
45
(
2
),
254
269
(
2020
).
12.
C. D.
Yarrington
,
R. R.
Wixom
, and
D. L.
Damm
, “
Shock interactions with heterogeneous energetic materials
,”
J. Appl. Phys.
123
(
10
),
105901
(
2018
).
13.
Q.
An
,
W. A.
Goddard
,
S. V.
Zybin
, and
S.-N.
Luo
, “
Inhibition of hotspot formation in polymer bonded explosives using an interface matching low density polymer coating at the polymer–explosive interface
,”
J. Phys. Chem. C
118
(
34
),
19918
19928
(
2014
).
14.
N. K.
Rai
,
O.
Sen
, and
H. S.
Udaykumar
, “
Macro-scale sensitivity through meso-scale hotspot dynamics in porous energetic materials: Comparing the shock response of 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) and 1,3,5,7-tetranitro-1,3,5,7-tetrazoctane (HMX)
,”
J. Appl. Phys.
128
(
8
),
085903
(
2020
).
15.
W. P.
Bassett
 et al., “
Shock initiation of explosives: High temperature hot spots explained
,”
Appl. Phys. Lett.
111
(
6
),
061902
(
2017
).
16.
R. L.
Gustavsen
 et al., “
Double shock initiation of the HMX based explosive EDC-37
,” in
Proceedings of the Conference of the American Physical Society, Topical Group on Shock Compression of Condensed Matter
,
Atlanta, GA
,
24–29 June 2001
(AIP Publishing,
2002
), Vol. 620(1), pp.
999
1002
.
17.
K. S.
Vandersall
 et al., “
Shock initiation experiments on the HMX based explosive LX-10 with associated ignition and growth modeling
,”
AIP Conf. Proc.
955
(
1
),
1010
1013
(
2007
).
18.
J. J.
Dick
, “
Measurement of the shock initiation sensitivity of low density HMX
,”
Combust. Flame
54
(
1–3
),
121
129
(
1983
).
19.
F.
Garcia
,
K. S.
Vandersall
, and
C. M.
Tarver
, “
Shock initiation experiments with ignition and growth modeling on low density HMX
,”
J. Phys. Conf. Ser.
500
(
5
),
052048
(
2014
).
20.
J. W.
Tringe
 et al., “
Observation and modeling of deflagration-to-detonation transition (DDT) in low-density HMX
,”
AIP Conf. Proc.
1793
(
1
),
060024
(
2017
).
21.
C. B.
Skidmore
 et al., “
The evolution of microstructural changes in pressed HMX explosives
,” No. LA-UR-98-3473; CONF-980803,
Los Alamos National Laboratory
,
NM
,
1998
.
22.
J.
Ilavsky
,
A. J.
Allen
,
G. G.
Long
, and
P. R.
Jemian
, “
Effective pinhole-collimated ultrasmall-angle x-ray scattering instrument for measuring anisotropic microstructures
,”
Rev. Sci. Instrum.
73
(
3
),
1660
1662
(
2002
).
23.
A. J.
Allen
, “
Characterization of ceramics by X-ray and neutron small-angle scattering
,”
J. Am. Ceram. Soc.
88
(
6
),
1367
1381
(
2005
).
24.
V.
Stepanov
 et al., “
Structural characterization of RDX-based explosive nanocomposites
,”
Propellants Explos. Pyrotech.
38
(
3
),
386
393
(
2013
).
25.
T. M.
Willey
 et al., “
Mesoscale evolution of voids and microstructural changes in HMX-based explosives during heating through the β-δ phase transition
,”
J. Appl. Phys.
118
(
5
),
055901
(
2015
).
26.
T. M.
Willey
 et al., “
Changes in pore size distribution upon thermal cycling of TATB-based explosives measured by ultra-small angle X-ray scattering
,”
Propellants Explos. Pyrotech.
31
(
6
),
466
471
(
2006
).
27.
J. T.
Mang
and
R. P.
Hjelm
, “
Preferred void orientation in uniaxially pressed PBX 9502
,”
Propellants Explos. Pyrotech.
46
(
1
),
67
77
(
2021
).
28.
C.
Li
,
B. W.
Hamilton
, and
A.
Strachan
, “
Hotspot formation due to shock-induced pore collapse in 1,3,5,7-tetranitro-1,3,5,7-tetrazoctane (HMX): Role of pore shape and shock strength in collapse mechanism and temperature
,”
J. Appl. Phys.
127
(
17
),
175902
(
2020
).
29.
R. A.
Austin
,
N. R.
Barton
,
W. M.
Howard
, and
L. E.
Fried
, “
Modeling pore collapse and chemical reactions in shock-loaded HMX crystals
,”
J. Phys. Conf. Ser.
500
(
5
),
052002
(
2014
).
30.
H. K.
Springer
 et al., “
Modeling the effects of shock pressure and pore morphology on hot spot mechanisms in HMX
,”
Propellants Explos. Pyrotech.
43
(
8
),
805
817
(
2018
).
31.
A.
Kapahi
and
H.
Udaykumar
, “
Three-dimensional simulations of dynamics of void collapse in energetic materials
,”
Shock Waves
25
(
2
),
177
187
(
2015
).
32.
N. K.
Rai
and
H.
Udaykumar
, “
Mesoscale simulation of reactive pressed energetic materials under shock loading
,”
J. Appl. Phys.
118
(
24
),
245905
(
2015
).
33.
N. K.
Rai
and
H.
Udaykumar
, “
Three-dimensional simulations of void collapse in energetic materials
,”
Phys. Rev. Fluids
3
(
3
),
033201
(
2018
).
34.
O.
Sen
 et al., “
Multi-scale shock-to-detonation simulation of pressed energetic material: A meso-informed ignition and growth model
,”
J. Appl. Phys.
124
(
8
),
085110
(
2018
).
35.
C. D.
Molek
 et al., “
Microstructural characterization of pressed HMX material sets at differing densities
,” Shock Compress. Condens. Matter (
2015
);
AIP Conf. Proc.
1793, 040007 (2017).
36.
E. J.
Welle
,
C. D.
Molek
,
R. R.
Wixom
, and
P.
Samuels
, “
Microstructural effects on the ignition behavior of HMX
,”
J. Phys.: Conf. Ser.
500
(
5
),
052049
(
2014
).
37.
E. J.
Welle
,
R. R.
Wixom
,
C. D.
Molek
, and
P.
Samuels
, “Microstructural effects on the ignition behavior of various HMX materials, ” Report SAND2013-5308C, Sandia National Laboratory (SNL-NM), Albuquerque, NM 2013, p. 1.
38.
C.
Miller
,
D.
Olsen
,
Y.
Wei
, and
M.
Zhou
, “
Three-dimensional microstructure-explicit and void-explicit mesoscale simulations of detonation of HMX at millimeter sample size scale
,”
J. Appl. Phys.
127
(
12
),
125105
(
2020
).
39.
J. M.
McGlaun
,
S. L.
Thompson
, and
M. G.
Elrick
, “
CTH: A three-dimensional shock wave physics code
,”
Int. J. Impact Eng.
10
(
1–4
),
351
360
(
1990
).
40.
K. S.
Jaw
and
J. S.
Lee
, “
Thermal behaviors of petn base polymer bonded explosives
,”
J. Therm. Anal. Calorim.
93
(
3
),
953
957
(
2008
).
41.
S.
Chaturvedi
and
P. N.
Dave
, “
Solid propellants: AP/HTPB composite propellants
,”
Arab. J. Chem.
12
(
8
),
2061
2068
(
2019
).
42.
G. I.
Kerley
,
Hydrocode Calculations of Detonator/Booster Initiation by Fragment Impacts
[
Sandia National Laboratory (SNL-NM)
,
Albuquerque, NM
,
1997
], pp.
1
50
.
43.
Y.
Wei
,
S.
Kim
,
Y.
Horie
, and
M.
Zhou
, “
Quantification of probabilistic ignition thresholds of polymer-bonded explosives with microstructure defects
,”
J. Appl. Phys.
124
(
16
),
165110
(
2018
).
44.
C. B.
Skidmore
,
D. S.
Phillips
,
S. F.
Son
, and
B. W.
Asay
, “
Characterization of HMX particles in PBX 9501
,”
AIP Conf. Proc.
429
,
579
582
(
1998
).
45.
S.
Kim
,
A.
Barua
,
Y.
Horie
, and
M.
Zhou
, “
Ignition probability of polymer-bonded explosives accounting for multiple sources of material stochasticity
,”
J. Appl. Phys.
115
(
17
),
174902
(
2014
).
46.
P.
Das
 et al., “
Molecular dynamics-guided material model for the simulation of shock-induced pore collapse in β-octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (β-HMX)
,”
J. Appl. Phys.
130
(
8
),
085901
(
2021
).
47.
M.
Zhai
and
G. B.
McKenna
, “
Mechanical properties of pentaerythritol tetranitrate(PETN) single crystals from nano-indentation: Depth dependent response at the nano meter scale
,”
Cryst. Res. Technol.
51
(
7
),
414
427
(
2016
).
48.
E. S.
Hertel
and
G. I.
Kerley
, “CTH EOS Package: Introductory Tutorial,” Sandia National Laboratories Report SAND98-0945, Sandia National Laboratory (SNL-NM), Albuquerque, NM, 1998.
49.
A. K.
Burnham
,
R. K.
Weese
, and
W. J.
Andrzejewski
, “
Kinetics of HMX and CP decomposition and their extrapolation for lifetime assessment
,” in
36th International Annual Conference and 32nd Intl Pyrotechnics Seminar Conference,
Karlruhe, Germany,
28 June–1 July 2005 (Lawrence Livermore National Lab,
2005
).
50.
K. J.
Laidler
, “
The development of the Arrhenius equation
,”
J. Chem. Educ.
61
(
6
),
494
(
1984
).
51.
H. K.
Springer
,
C. M.
Tarver
,
J. E.
Reaugh
, and
C. M.
May
, “
Investigating short-pulse shock initiation in HMX-based explosives with reactive meso-scale simulations
,”
J. Phys. Conf. Ser.
500
(
5
),
052041
(
2014
).
52.
C. M.
Tarver
and
C. M.
May
, “
Short pulse shock initiation experiments and modeling on LX-16, LX-10, and ultrafine TATB
,” in
Fourteenth International Detonation Symposium, IDS
(AIP Publishing,
2010
), pp.
648
654
.
53.
C.
Miller
,
D. E.
Kittell
,
C. D.
Yarrington
, and
M.
Zhou
, “
Prediction of probabilistic detonation threshold via millimeter-scale microstructure-explicit and void-explicit simulations
,”
Propellants Explos. Pyrotech.
45
(
2
),
254
269
(
2020
).
54.
E. L.
Lee
and
C. M.
Tarver
, “
Phenomenological model of shock initiation in heterogeneous explosives
,”
Phys. Fluids
23
(
12
),
2362
2372
(
1980
).
55.
C. M.
Tarver
, “
Chemical energy release in self-sustaining detonation waves in condensed explosives
,”
Combust. Flame
46
,
648
654
(
1982
).
56.
R. N.
Mulford
and
D. C.
Swift
, “
Mesoscale modelling of shock initiation in HMX-based explosives
,”
AIP Conf. Proc.
620
(
1
),
415
418
(
2002
).
57.
J. J.
Rimoli
,
E.
Gürses
, and
M.
Ortiz
, “
Shock-induced subgrain microstructures as possible homogenous sources of hot spots and initiation sites in energetic polycrystals
,”
Phys. Rev. B
81
(
1
),
014112
(
2010
).
58.
J. G.
Bennett
,
K. S.
Haberman
,
J. N.
Johnson
, and
B. W.
Asay
, “
A constitutive model for the non-shock ignition and mechanical response of high explosives
,”
J. Mech. Phys. Solids
46
(
12
),
2303
2322
(
1998
).
59.
D. J.
Benson
and
P.
Conley
, “
Eulerian finite-element simulations of experimentally acquired HMX microstructures
,”
Modell. Simul. Mater. Sci. Eng.
7
(
3
),
333
354
(
1999
).
60.
P. T.
Rao
, and
K. A.
Gonthier
, “
Analysis of dissipation induced by successive planar shock loading of granular explosive
,” in
51st AIAA/SAE/ASEE Joint Propulsion Conference Proceeding
,
Orlando, FL,
27–29 July, 2015 (ARC,
2015
).
61.
C. L.
Mader
, “
Numerical modeling of detonations
,” in
Los Alamos Series in Basic and Applied Sciences
(
University of California Press
,
Berkeley
,
1979
).
62.
L.
Borne
,
10th International Symposium on Detonation
(
Office of Naval Research
,
1993
), p.
286
.
63.
J. R.
Peterson
and
C. A.
Wight
, “
An Eulerian–Lagrangian computational model for deflagration and detonation of high explosives
,”
Combust. Flame
159
(
7
),
2491
2499
(
2012
).
64.
T.
Cheng
, “
Review of novel energetic polymers and binders—High energy propellant ingredients for the new space race
,”
Des. Monomers Polym.
22
(
1
),
54
65
(
2019
).
You do not currently have access to this content.