This work reports on the development of a multi-output deep learning (DL) model for simultaneous prediction of the figure of merits (Ion, Gm, and Vth) of a gallium nitride (GaN) based high electron mobility transistors (HEMTs) for various epitaxial structures. To generate an initial data set, 2160 GaN HEMTs have also been simulated by an experimentally validated simulation methodology. A generative adversarial network (GAN) has been also introduced in semiconductor device modeling to augment the training data set. The generated data set by GAN is found to be in good agreement with the initial data set with a Frechet Inception Distance score of 0.151. The final data set has seven dimensions, i.e., aluminum gallium nitride (AlGaN) thickness (tAlGaN), aluminum content in AlGaN, doping in AlGaN, type of doping in AlGaN, Ion, Gm, and Vth, where the first four are inputs and the last three are the outputs of the DL model. The DL model is developed with the possibility of reducing unnecessary use of technology computer-aided design simulations for similar types of problems as such simulations require huge computational resources, expertise, and development time to obtain output. Mean squared error and R-squared values for the predicted Ion, Gm, and Vth are 59.69, 4.28, and 0.09, and 0.99, 0.99, and 0.97, respectively.

1.
C.-T.
Ma
and
Z.-H.
Gu
, “
Review of GaN HEMT applications in power converters over 500 W
,”
Electronics
8
,
1401
(
2019
).
2.
J.
Kim
,
Y.
Kim
,
S.
Oh
,
J.
Choi
,
D.-H.
Lee
,
K.
Cho
,
S.
Lee
, and
C.-H.
Ahn
, “
A 20-W wide bandwidth GaN HEMT power amplifier for VHF/UHF applications
,”
IEEE Trans. Ind. Electron.
67
,
10905
10910
(
2020
).
3.
K.-a.
Son
,
A.
Liao
,
G.
Lung
,
M.
Gallegos
,
T.
Hatake
,
R. D.
Harris
,
L. Z.
Scheick
, and
W. D.
Smythe
, “
GaN-based high temperature and radiation-hard electronics for harsh environments
,”
Nanosci. Nanotechnol. Lett.
2
,
89
95
(
2010
).
4.
R.
Chu
, “
GaN power switches on the rise: Demonstrated benefits and unrealized potentials
,”
Appl. Phys. Lett.
116
,
090502
(
2020
).
5.
M.
Sudow
,
K.
Andersson
,
M.
Fagerlind
,
M.
Thorsell
,
P.
Nilsson
, and
N.
Rorsman
, “
A single-ended resistive x-band AlGaN/GaN HEMT MMIC mixer
,”
IEEE Trans. Microwave Theory Tech.
56
,
2201
2206
(
2008
).
6.
O.
Ambacher
,
B.
Foutz
,
J.
Smart
,
J. R.
Shealy
,
N. G.
Weimann
,
K.
Chu
,
M.
Murphy
,
A. J.
Sierakowski
,
W. J.
Schaff
,
L. F.
Eastman
,
R.
Dimitrov
,
A.
Mitchell
, and
M.
Stutzmann
, “
Two dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN heterostructures
,”
J. Appl. Phys.
87
,
334
344
(
2000
).
7.
C.-C.
Huang
,
G.-Y.
Lee
,
J.-I.
Chyi
,
H.-T.
Cheng
,
C.-P.
Hsu
,
Y.-R.
Hsu
,
C.-H.
Hsu
,
Y.-F.
Huang
,
Y.-C.
Sun
,
C.-C.
Chen
,
S.-S.
Li
,
J.
Andrew Yeh
,
D.-J.
Yao
,
F.
Ren
, and
Y.-L.
Wang
, “
AlGaN/GaN high electron mobility transistors for protein–peptide binding affinity study
,”
Biosens. Bioelectron.
41
,
717
722
(
2013
).
8.
N.
Chaturvedi
,
K.
Singh
,
P.
Kachhawa
,
R.
Lossy
,
S.
Mishra
,
A.
Chauhan
,
D. K.
Kharbanda
,
A. K.
Jain
,
R. R.
Thakur
,
D.
Saxena
,
P. K.
Khanna
, and
J.
Wuerfl
, “
AlGaN/GaN HEMT based sensor and system for polar liquid detection
,”
Sens. Actuators A
302
,
111799
(
2020
).
9.
N.
Chaturvedi
,
R.
Chowdhury
,
S.
Mishra
,
K.
Singh
,
N.
Chaturvedi
,
A.
Chauhan
,
S.
Pande
,
N.
Sharma
,
P.
Parjapat
,
R.
Sharma
,
P.
Kothari
, and
A. K.
Singh
, “
GaN HEMT based biosensor for the detection of breast cancer marker (C-erbB2)
,”
Semicond. Sci. Technol.
36
,
045018
(
2021
).
10.
N.
Sharma
,
S.
Mishra
,
K.
Singh
,
N.
Chaturvedi
,
A.
Chauhan
,
C.
Periasamy
,
D. K.
Kharbanda
,
P.
Parjapat
,
P. K.
Khanna
, and
N.
Chaturvedi
, “
High-resolution AlGaN/GaN HEMT-based electrochemical sensor for biomedical applications
,”
IEEE Trans. Electron Devices
67
,
289
295
(
2020
).
11.
I. H.
Sarker
, “
Machine learning: Algorithms, real-world applications and research directions
,”
SN Comput. Sci.
2
,
160
(
2021
).
12.
J.
Schmidt
,
M. R. G.
Marques
,
S.
Botti
, and
M. A. L.
Marques
, “
Recent advances and applications of machine learning in solid-state materials science
,”
npj Comput. Mater.
5
,
83
(
2019
).
13.
P.
Baldi
,
K.
Bauer
,
C.
Eng
,
P.
Sadowski
, and
D.
Whiteson
, “
Jet substructure classification in high-energy physics with deep neural networks
,”
Phys. Rev. D
93
,
094034
(
2016
).
14.
J. S.
Read
,
X.
Jia
,
J.
Willard
,
A. P.
Appling
,
J. A.
Zwart
,
S. K.
Oliver
,
A.
Karpatne
,
G. J. A.
Hansen
,
P. C.
Hanson
,
W.
Watkins
,
M.
Steinbach
, and
V.
Kumar
, “
Process-guided deep learning predictions of lake water temperature
,”
Water Resour. Res.
55
,
9173
9190
, (
2019
).
15.
P.
Nowack
,
P.
Braesicke
,
J.
Haigh
,
N. L.
Abraham
,
J.
Pyle
, and
A.
Voulgarakis
, “
Using machine learning to build temperature-based ozone parameterizations for climate sensitivity simulations
,”
Environ. Res. Lett.
13
,
104016
(
2018
).
16.
C.
Tesche
,
C. N.
De Cecco
,
S.
Baumann
,
M.
Renker
,
T. W.
McLaurin
,
T. M.
Duguay
,
R. R.
Bayer
,
D. H.
Steinberg
,
K. L.
Grant
,
C.
Canstein
,
C.
Schwemmer
,
M.
Schoebinger
,
L. M.
Itu
,
S.
Rapaka
,
P.
Sharma
, and
U. J.
Schoepf
, “
Coronary ct angiography–derived fractional flow reserve: Machine learning algorithm versus computational fluid dynamics modeling
,”
Radiology
288
,
64
72
(
2018
).
17.
S.
Mishra
and
N.
Chaturvedi
, “
Simulation and machine learning modelling based comparative study of InAlGaN and AlGaN high electron mobility transistors for the detection of HER-2
,”
Anal. Methods
13
,
3659
3666
(
2021
).
18.
B.
Alipanahi
,
A.
Delong
,
M. T.
Weirauch
, and
B. J.
Frey
, “
Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning
,”
Nat. Biotechnol.
33
,
831
838
(
2015
).
19.
M. W.
Libbrecht
and
W. S.
Noble
, “
Machine learning applications in genetics and genomics
,”
Nat. Rev. Genet.
16
,
321
332
(
2015
).
20.
G.
Kaissis
,
A.
Ziller
,
J.
Passerat-Palmbach
,
T.
Ryffel
,
D.
Usynin
,
A.
Trask
,
I.
Lima
,
J.
Mancuso
,
F.
Jungmann
,
M.-M.
Steinborn
,
A.
Saleh
,
M.
Makowski
,
D.
Rueckert
, and
R.
Braren
, “
End-to-end privacy preserving deep learning on multi-institutional medical imaging
,”
Nat. Mach. Intell.
3
,
473
484
(
2021
).
21.
I. J.
Goodfellow
,
J.
Pouget-Abadie
,
M.
Mirza
,
B.
Xu
,
D.
Warde-Farley
,
S.
Ozair
,
A.
Courville
, and
Y.
Bengio
, “Generative adversarial networks,” arXiv:1406.2661 [stat.ML] (2014).
22.
A.
van den Oord
,
S.
Dieleman
,
H.
Zen
,
K.
Simonyan
,
O.
Vinyals
,
A.
Graves
,
N.
Kalchbrenner
,
A.
Senior
, and
K.
Kavukcuoglu
, “Wavenet: A generative model for raw audio,” arXiv:1609.03499 [cs.SD] (2016).
23.
R. A.
Yeh
,
C.
Chen
,
T.
Lim
,
M.
Hasegawa-Johnson
, and
M. N.
Do
, “Semantic image in painting with perceptual and contextual losses,” CoRR arXiv:1607.07539 (2016).
24.
J.
Chen
,
Y.
Wu
,
C.
Jia
,
H.
Zheng
, and
G.
Huang
, “
Customizable text generation via conditional text generative adversarial network
,”
Neurocomputing
416
,
125
135
(
2020
).
25.
K.
Shmelkov
,
C.
Schmid
, and
K.
Alahari
, “How good is my GaN?,” in Computer Vision—ECCV 2018, edited by V. Ferrari, M. Hebert, C. Sminchisescu, and Y. Weiss (Springer International Publishing, Cham, 2018), pp. 218–234.
26.
S.
Zhao
,
Z.
Liu
,
J.
Lin
,
J.-Y.
Zhu
, and
S.
Han
, “Differentiable augmentation for data-efficient GAN training,” arXiv:2006.10738 [cs.CV] (2020).
27.
A.
Borji
, “Pros and cons of GAN evaluation measures,” arXiv:1802.03446 [cs.CV] (2018).
28.
Q.
Shi
,
M.
Abdel-Aty
, and
J.
Lee
, “
A Bayesian ridge regression analysis of congestion’s impact on urban expressway safety
,”
Accident Anal. Prevention
88
,
124
137
(
2016
).
29.
Y.
Yang
and
Y.
Yang
, “
Hybrid prediction method for wind speed combining ensemble empirical mode decomposition and Bayesian ridge regression
,”
IEEE Access
8
,
71206
71218
(
2020
).
30.
N. K.
Ahmed
,
A. F.
Atiya
,
N. E.
Gayar
, and
H.
El-Shishiny
, “
An empirical comparison of machine learning models for time series forecasting
,”
Econ. Rev.
29
,
594
621
(
2010
).
31.
X.-N.
Bui
,
P.
Jaroonpattanapong
,
H.
Nguyen
,
Q.-H.
Tran
, and
N. Q.
Long
, “
A novel hybrid model for predicting blast-induced ground vibration based on k-nearest neighbors and particle swarm optimization
,”
Sci. Rep.
9
,
13971
(
2019
).
32.
A. J.
Smola
and
B.
Schölkopf
, “
A tutorial on support vector regression
,”
Statist. Comput.
14
,
199
222
(
2004
).
33.
M.
Awad
and
R.
Khanna
, “
Support vector regression
,” in
Efficient Learning Machines: Theories, Concepts, and Applications for Engineers and System Designers
(
Apress
,
Berkeley, CA
,
2015
), pp.
67
80
.
34.
“Multi output deep learning model for preditction of FOMs of GaN HEMTS,” GitHub, available at https://github.com/shivanshu-ceeri/Multi-output-deep-learning-model-for-prediction-of-FOMs-of-GaN-HEMTs

Supplementary Material

You do not currently have access to this content.