In this study, a new method is proposed for producing polymer composites via the adsorption of multiwalled carbon nanotubes (MWCNTs) on the surface of polystyrene spheres (PS) to provide a cellular distribution of MWCNTs in the composite. The method makes it possible to control the cell size down to the submicron level and the conductivity of the composite in a wide range. The effect of the MWCNT concentration on the surface of PS on the structure of the resulting composites and their electrophysical properties are studied in the frequency range of 115 GHz–1.4 THz. The percolation nature of the composite conductivity was established. It was shown that the obtained composite is a regularly chaotic medium, and its regularity scale corresponds to the sizes of the PS. MWCNTs on the PS surface form two subsystems: the first is a pseudo-regular subsystem on the edges of cuboid-like PS, while the second subsystem consists of chaotically scattered MWCNTs with unclosed ends on the faces of PS. The first subsystem belongs to the regular part of the structure and mainly determines the properties of the medium at frequencies above 500 GHz. The second subsystem of nanotubes is characterized by a small electrodynamic scale comparable with the size of one PS cell and determines the effective properties of the composites at frequencies below 500 GHz.

1.
L.
Zhang
, in
Electromagnetic Materials and Devices
, edited by
B.
Shuguang
(
IntechOpen
,
Rijeka
,
2020
), Chap. 10.
2.
A.
Kolanowska
,
D.
Janas
,
A. P.
Herman
,
R. G.
Jędrysiak
,
T.
Giżewski
, and
S.
Boncel
,
Carbon
126
,
31
52
(
2018
).
3.
S.
Ayub
,
B. H.
Guan
,
F.
Ahmad
,
M. F.
Javed
,
A.
Mosavi
, and
I.
Felde
,
Metals
11
,
1164
(
2021
).
4.
M.
Green
and
X.
Chen
,
J. Mater.
5
,
503
541
(
2019
).
5.
L.
Vovchenko
,
L.
Matzui
,
V.
Oliynyk
,
Y.
Milovanov
,
Y.
Mamunya
,
N.
Volynets
,
A.
Plyushch
, and
P.
Kuzhir
,
Materials
13
,
1118
(
2020
).
6.
B.
Zhao
,
M.
Hamidinejad
,
S.
Wang
,
P.
Bai
,
R.
Che
,
R.
Zhang
, and
C. B.
Park
,
J. Mater. Chem. A
9
,
8896
8949
(
2021
).
7.
P. P.
Kuzhir
,
A. G.
Paddubskaya
,
S. A.
Maksimenko
,
V. L.
Kuznetsov
,
S.
Moseenkov
,
A. I.
Romanenko
,
O. A.
Shenderova
,
J.
Macutkevic
,
G.
Valušis
, and
P.
Lambin
,
IEEE Trans. Electromagn. Compat.
54
,
6
16
(
2012
).
8.
G.
Spinelli
,
P.
Lamberti
,
V.
Tucci
,
R.
Kotsilkova
,
E.
Ivanov
,
D.
Menseidov
,
C.
Naddeo
,
V.
Romano
,
L.
Guadagno
,
R.
Adami
,
D.
Meisak
,
D.
Bychanok
, and
P.
Kuzhir
,
Materials
12
,
2369
(
2019
).
9.
K.
Banerjee
and
N.
Srivastava
, in
Proceedings of 43rd Annual Conference on Design Automation—DAC 06
(
ACM Press
,
San Francisco
,
CA
,
2006
), p.
809
.
10.
D.-X.
Yan
,
H.
Pang
,
B.
Li
,
R.
Vajtai
,
L.
Xu
,
P.-G.
Ren
,
J.-H.
Wang
, and
Z.-M.
Li
,
Adv. Funct. Mater.
25
,
559
566
(
2015
).
11.
J.
Liu
,
H.-B.
Zhang
,
R.
Sun
,
Y.
Liu
,
Z.
Liu
,
A.
Zhou
, and
Z.-Z.
Yu
,
Adv. Mater.
29
,
1702367
(
2017
).
12.
G.
Postiglione
,
G.
Natale
,
G.
Griffini
,
M.
Levi
, and
S.
Turri
,
Compos. Part A Appl. Sci. Manuf.
76
,
110
114
(
2015
).
13.
P.
Lambin
,
A.
Liubimau
,
D.
Bychanok
,
L.
Vitale
, and
P.
Kuzhir
,
Polymers
12
,
2892
(
2020
).
14.
Y.
Ma
and
Y.
Chen
,
Natl. Sci. Rev.
2
,
40
53
(
2015
).
15.
E.
Forati
and
G. W.
Hanson
,
Phys. Rev. B
88
,
125125
(
2013
).
16.
D. V.
Krasnikov
,
I. O.
Dorofeev
,
T. E.
Smirnova
,
V. I.
Suslyaev
,
M. A.
Kazakova
,
S. I.
Moseenkov
, and
V. L.
Kuznetsov
,
Phys. Status Solidi (B)
255
,
1700256
(
2018
).
17.
V. L.
Kuznetsov
,
D. V.
Krasnikov
,
A. N.
Schmakov
, and
K. V.
Elumeeva
,
Phys. Status Solidi (B)
249
,
2390
2394
(
2012
).
18.
V. L.
Kuznetsov
,
S. N.
Bokova-Sirosh
,
S. I.
Moseenkov
,
A. V.
Ishchenko
,
D. V.
Krasnikov
,
M. A.
Kazakova
,
A. I.
Romanenko
,
E. N.
Tkachev
, and
E. D.
Obraztsova
,
Phys. Status Solidi (B)
,
2444
2450
(
2014
).
19.
A.
Usoltseva
,
V.
Kuznetsov
,
N.
Rudina
,
E.
Moroz
,
M.
Haluska
, and
S.
Roth
,
Phys. Status Solidi (B)
244
,
3920
3924
(
2007
).
20.
K. P.
Lok
and
C. K.
Ober
,
Can. J. Chem.
63
,
209
216
(
1985
).
21.
C. K.
Ober
and
M. L.
Hair
,
J. Polym. Sci. Part A Polym. Chem.
25
,
1395
1407
(
1987
).
22.
A. J.
Paine
,
W.
Luymes
, and
J.
McNulty
,
Macromolecules
23
,
3104
3109
(
1990
).
23.
See https://t.me/nanoparticles_nsk for information about no code training and testing of deep neural networks.
24.
A. G.
Okunev
,
M. Y.
Mashukov
,
A. V.
Nartova
, and
A. V.
Matveev
,
Nanomaterials
10
,
1285
(
2020
).
25.
A. G.
Okunev
,
M.
Yu Mashukov
,
N. N.
Sankova
,
A. V.
Nartova
, and
A. V.
Matveev
,
IOP Conf. Ser.: Mater. Sci. Eng.
1155
,
012015
(
2021
).
26.
B. C.
Russell
,
A.
Torralba
,
K. P.
Murphy
, and
Freeman
, “LabelMe: A database and web-based tool for image annotation,”
Int. J. Comput. Vis.
77
(1-3),
157
173
(
2008
).
27.
S. I.
Moseenkov
,
V. L.
Kuznetsov
,
G. V.
Golubtsov
,
A. V.
Zavorin
, and
A. N.
Serkova
,
Express Polym. Lett.
13
,
1057
1070
(
2019
).
28.
A. A.
Volkov
,
Y. G.
Goncharov
,
G. V.
Kozlov
,
S. P.
Lebedev
, and
A. M.
Prokhorov
,
Infrared Phys.
25
,
369
373
(
1985
).
29.
K. V.
Dorozhkin
,
G. E.
Dunaevsky
,
S. Y.
Sarkisov
,
V. I.
Suslyaev
,
O. P.
Tolbanov
,
V. A.
Zhuravlev
,
Y. S.
Sarkisov
,
V. L.
Kuznetsov
,
S. I.
Moseenkov
,
N. V.
Semikolenova
,
V. A.
Zakharov
, and
V. V.
Atuchin
,
Mater. Res. Express
4
,
106201
(
2017
).
30.
A. V.
Melnikov
,
P. P.
Kuzhir
,
S. A.
Maksimenko
,
G. Y.
Slepyan
,
A.
Boag
,
O.
Pulci
,
I. A.
Shelykh
, and
M. V.
Shuba
,
Phys. Rev. B
103
,
075438
(
2021
).
31.
B. P.
Gorshunov
,
E. S.
Zhukova
,
J. S.
Starovatykh
,
M. A.
Belyanchikov
,
A. K.
Grebenko
,
A. V.
Bubis
,
V. I.
Tsebro
,
A. A.
Tonkikh
,
D. V.
Rybkovskiy
,
A. G.
Nasibulin
,
E. I.
Kauppinen
, and
E. D.
Obraztsova
,
Carbon
126
,
544
551
(
2018
).
You do not currently have access to this content.