Conductive polymer composites are widely used for electromagnetic radiation protection. Several strategies can be employed for creating shield materials with enhanced efficiency: the use of a hybrid filler that contains nanoparticles of different types, specific structural design, and methods for decreasing the percolation threshold. We present the study of segregated polymer composites (SPCs) with ultrahigh molecular weight polyethylene (UHMWPE) matrix and hybrid fillers of NiFe-decorated graphite nanoparticles (GNPs). The microstructure, electrical percolation behavior, and electromagnetic shielding efficiency of the developed SPCs as a function of conductive filler content are determined. The combination of the advantages of the segregated structure with a synergistic effect of a hybrid filler in (GNP-NiFe)/UHMWPE allows decreasing the percolation threshold to 0.45 vol. %. The enhanced shielding efficiency of 37 dB in the frequency range of 26–37.5 GHz is achieved at the filler content of 3.4 vol. % in 1 mm thick composite samples. The dominant shielding characteristic of absorption renders hybrid composites with a segregated structure promising materials.

1.
B.
Deutschmann
,
G.
Winkler
, and
P.
Kastner
, “
Impact of electromagnetic interference on the functional safety of smart power devices for automotive applications
,”
Elektrotechnik Informationstechnik
6
,
135
(
2018
).
2.
P.
Mathur
and
S.
Raman
, “
Electromagnetic interference (EMI): Measurement and reduction techniques
,”
J. Electron. Mater.
49
(
5
),
2975
2998
(
2020
).
3.
Z.
Liu
,
G.
Bai
,
Y.
Huang
,
Y.
Ma
,
F.
Du
,
F.
Li
,
T.
Guo
, and
Y.
Chen
, “
Reflection and absorption contributions to the electromagnetic interference shielding of single-walled carbon nanotube/polyurethane composites
,”
Carbon
45
,
821
827
(
2007
).
4.
R.
Wang
,
Y.
Zheng
,
L. H.
Chen
,
S. Y.
Chen
,
D. X.
Zhuo
, and
L. X.
Wu
, “
Fabrication of high mechanical performance UHMWPE nanocomposites with high-loading multiwalled carbon nanotubes
,”
J. Appl. Polym. Sci.
137
,
48667
(
2019
).
5.
J.
Lin
,
H.
Zhang
,
P.
Li
,
X.
Yin
,
Y.
Chen
, and
G.
Zeng
, “
Electromagnetic shielding of multiwalled, bamboo-like carbon nanotube/methyl vinyl silicone composite prepared by liquid blending
,”
Compos. Interfaces
21
,
553
569
(
2014
).
6.
H.
Lecocq
,
N.
Garois
,
O.
Lhost
,
P.
Girard
,
P.
Cassagnau
, and
A.
Serghei
, “
Polypropylene/carbon nanotubes composite materials with enhanced electromagnetic interference shielding performance: Properties and modeling
,”
Compos. Part B
189
,
107866
(
2020
).
7.
N.
Abbas
and
H. T.
Kim
, “
Multi-walled carbon nanotube/polyethersulfone nanocomposites for enhanced electrical conductivity, dielectric properties and efficient electromagnetic interference shielding at low thickness
,”
Macromol. Res.
24
(
12
),
1084
1090
(
2016
).
8.
O.
Yakovenko
,
L.
Matzui
,
L.
Vovchenko
,
O.
Lazarenko
,
Y.
Perets
, and
O.
Lozitsky
, “
Complex permittivity of polymer-based composites with carbon nanotubes in microwave band
,”
Appl. Nanosci.
10
,
2691
2697
(
2020
).
9.
Y.-J.
Wan
,
P.-L.
Zhu
,
S.-H.
Yu
,
R.
Sun
,
C.-P.
Wong
, and
W.-H.
Liao
, “
Graphene paper for exceptional EMI shielding performance using large-sized graphene oxide sheets and doping strategy
,”
Carbon
122
,
74
81
(
2017
).
10.
D.-X.
Yan
,
H.
Pang
,
B.
Li
,
R.
Vajtai
,
L.
Xu
,
P.-G.
Ren
,
J.-H.
Wang
, and
Z.-M.
Li
, “
Structured reduced graphene oxide/polymer composites for ultra-efficient electromagnetic interference shielding
,”
Adv. Funct. Mater.
25
,
559
566
(
2015
).
11.
D.
Munalli
,
G.
Dimitrakis
,
D.
Chronopoulos
,
S.
Greedy
, and
A.
Long
, “
Electromagnetic shielding effectiveness of carbon fibre reinforced composites
,”
Compos. Part B
173
,
106906
(
2019
).
12.
D.
Wu
,
X.
Gao
,
J.
Sun
,
D.
Wu
,
Y.
Liu
,
S.
Kormakov
,
X.
Zheng
,
L.
Wu
,
Y.
Huang
, and
Z.
Guo
, “
Spatial confining forced network assembly for preparation of high-performance conductive polymeric composites
,”
Compos. Part A
102
,
88
95
(
2017
).
13.
H.
Deng
,
L.
Lin
,
M. A.
Ji
,
S.
Zhang
,
M.
Yang
, and
Q.
Fu
, “
Progress on the morphological control of conductive network in conductive polymer composites and the use as electroactive multifunctional materials
,”
Prog. Polym. Sci.
39
,
627
655
(
2014
).
14.
W.
Bauhofer
and
J. Z.
Kovacs
, “
A review and analysis of electrical percolation in carbon nanotube polymer composites
,”
Compos. Sci. Technol.
69
,
1486
1498
(
2009
).
15.
Y.
Perets
,
O.
Lazarenko
,
O.
Syvolozhskyi
,
L.
Vovchenko
, and
L.
Matzui
, “
Percolation characteristics of multi-polymer composites with different ratios of nanocarbon fillers
,”
Mol. Cryst. Liq. Cryst.
699
,
97
110
(
2020
).
16.
H.
Liu
,
S.
Wu
,
C.
You
,
N.
Tian
,
Y.
Li
, and
N.
Chopra
, “
Recent progress in morphological engineering of carbon materials for electromagnetic interference shielding
,”
Carbon
172
,
569
596
(
2021
).
17.
N.
Bagotia
,
V.
Choudhary
, and
D. K.
Sharma
, “
Synergistic effect of graphene/multiwalled carbon nanotube hybrid fillers on mechanical, electrical and EMI shielding properties of polycarbonate/ethylene methyl acrylate nanocomposites
,”
Compos. Part B
159
,
378
388
(
2019
).
18.
R.
Jagadeesh
,
C. B.
Shivamurthy
,
S.
Kulkarni
, and
M.
Kumar
, “
Hybrid polymer composites for EMI shielding application—A review
,”
Mater. Res. Express
6
,
082008
(
2019
).
19.
L.
Matzui
,
O.
Yakovenko
,
L.
Vovchenko
,
O.
Lozitsky
,
V.
Oliynyk
, and
V.
Zagorodnii
, “
Polymer nanocomposites with hybrid fillers as materials with controllable electrodynamic characteristics for microwave devices
,” in
Fundamental and Applied Nano-Electromagnetics II. NATO Science for Peace and Security Series B: Physics and Biophysics
, edited by
A.
Maffucci
and
S.
Maksimenko
(
Springer
,
Dordrecht
,
2019
).
20.
O.
Lozitsky
,
L.
Vovchenko
,
L.
Matzui
,
Y.
Milovanov
, and
V. V.
Garashchenko
, “
Electrical properties of epoxy composites with carbon nanotubes, mixed with TiO2 or Fe particles
,”
Appl. Nanosci.
11
(
6
),
1827
1837
(
2021
).
21.
L.
Vovchenko
,
O.
Lozitsky
,
L.
Matzui
,
V.
Oliynyk
,
V.
Zagorodnii
,
Y.
Milovanov
,
V.
Garashchenko
, and
Y.
Prylutskyy
, “
Impedance characterization and microwave permittivity of multi-walled carbon nanotubes/BaTiO3/epoxy composites
,”
Appl. Phys. A
126
,
801
(
2020
).
22.
P.
Saini
,
M.
Arora
,
G.
Gupta
,
B. K.
Gupta
,
V.
Nand
, and
V.
Choudhary
, “
High permittivity polyaniline–barium titanate nanocomposites with excellent electromagnetic interference shielding response
,”
Nanoscale
5
,
4330
4336
(
2013
).
23.
M.-M.
Lu
,
W.-Q.
Cao
,
H.-L.
Shi
,
X.-Y.
Fang
,
J.
Yang
,
Z.-L.
Hou
,
H.-B.
Jin
,
W.-Z.
Wang
,
J.
Yuan
, and
M.-S.
Cao
, “
Multi-wall carbon nanotubes decorated with ZnO nanocrystals: Mild solution-process synthesis and highly efficient microwave absorption properties at elevated temperature
,”
J. Mater. Chem. A
2
,
10540
10547
(
2014
).
24.
L.
Vovchenko
,
O.
Lozitsky
,
L.
Matzui
,
V.
Oliynyk
,
V.
Zagorodnii
, and
M.
Skoryk
, “
Electromagnetic shielding properties of epoxy composites with hybrid filler nanocarbon/BaTiO3
,”
Mater. Chem. Phys.
240
,
122234
(
2020
).
25.
D.
Klygacha
,
M.
Vakhitova
,
P.
Suvorova
,
D.
Zherebtsova
,
S.
Trukhanova
,
A.
Kozlovskiyd
,
M.
Zdorovetsd
, and
A.
Trukhanova
, “
Magnetic and microwave properties of carbonyl iron in the high frequency range
,”
J. Magn. Magn. Mater.
490
,
165493
(
2019
).
26.
F.
Ren
,
D.
Song
,
Z.
Li
,
L. C.
Jia
,
Y.
Zhao
,
D. X.
Yan
, and
P. G.
Ren
, “
Synergistic effect of graphene nanosheets and carbonyl iron nickel alloy hybrid fillers on electromagnetic interference shielding and thermal conductivity of cyanate ester composites
,”
J. Mater. Chem. C
6
,
1476
1486
(
2018
).
27.
R.
Bhattacharyya
,
O.
Prakash
,
S.
Roy
,
A.
Singh
,
T.
Kumar Bhattacharya
,
P.
Maiti
,
S.
Bhattacharyya
, and
S.
Das
, “
Oxide-ferrite hybrid framework as enhanced broadband absorption in gigahertz frequencies
,”
Sci. Rep.
9
,
12111
(
2019
).
28.
H.
Choudhary
,
R.
Kumar
,
S. P.
Pawar
,
U.
Sundararaj
, and
B.
Sahoo
, “
Enhancing absorption dominated microwave shielding in Co@C–PVDF nanocomposites through improved magnetization and graphitization of the Co@C-nanoparticles
,”
Phys. Chem. Chem. Phys.
21
,
15595
15608
(
2019
).
29.
L.
Vovchenko
,
O.
Lozitsky
,
V.
Oliynyk
,
V.
Zagorodnii
,
T.
Len
,
L.
Matzui
, and
Y.
Milovanov
, “
Dielectric and microwave shielding properties of three-phase composites graphite nanoplatelets/carbonyl iron/epoxy resin
,”
Appl. Nanosci.
10
,
4781
4790
(
2020
).
30.
P.
Pawar
and
S.
Bose
, “
Extraordinary synergy in attenuating microwave radiation with cobalt-decorated graphene oxide and carbon nanotubes in polycarbonate/poly(styrene-coacrylonitrile) blends
,”
ChemNanoMat
1
,
603
614
(
2015
).
31.
P.
Kumar
,
U. N.
Maiti
,
A.
Sikdar
,
T. K.
Das
,
A.
Kumar
, and
V.
Sudarsan
, “
Recent advances in polymer and polymer composites for electromagnetic interference shielding: Review and future prospects
,”
Polym. Rev.
59
(
4
),
687
738
(
2019
).
32.
H.
Zhao
,
Z.
Zhu
,
C.
Xiong
,
X.
Zheng
, and
Q.
Lin
, “
The influence of different Ni content on the radar absorbing properties of NiFe nano powders
,”
RSC Adv.
20
,
16115
16903
(
2016
).
33.
J. L.
McCrea
,
G.
Palumbo
,
G. D.
Hibbard
, and
U.
Erb
, “
Properties and applications for electrodeposited nanocrystalline Fe-Ni alloys
,”
Rev. Adv. Mater. Sci.
5
,
252
558
(
2003
).
34.
L.
Vovchenko
,
L.
Matzui
,
V.
Oliynyk
,
V.
Launetz
, and
F.
Le Normand
, “
Anomalous microwave absorption in multi-walled carbon nanotubes filled with iron
,”
Physica E
4
,
928
931
(
2012
).
35.
Q.
Yu
,
Y.
Wang
,
P.
Chen
,
W.
Nie
,
H.
Chen
, and
J.
Zhou
, “
Reduced graphene oxide-wrapped super dense Fe3O4 nanoparticles with enhanced electromagnetic wave absorption properties
,”
Nanomaterials
9
(
6
),
845
(
2019
).
36.
Q.
Zhou
,
M.
Wang
,
J.
Dale
,
Z.
Qiang
,
Y.
Fan
, and
C.
Meifang Zhu
, “
Modulating electromagnetic interference shielding performance of ultra-lightweight composite foams through shape memory function
,”
Compos. Part B
204
(
1
),
108497
(
2021
).
37.
W.-L.
Song
,
M.-S.
Cao
,
M.-M.
Lu
,
S.
Bi
,
C.-Y.
Wang
,
J.
Liu
,
J.
Yuan
, and
L.-Z.
Fan
, “
Flexible graphene/polymer composite films in sandwich structures for effective electromagnetic interference shielding
,”
Carbon
66
,
67
(
2014
).
38.
P.
Kumar
,
F.
Shahzad
,
S. M.
Hong
, and
C. M.
Koo
, “
A flexible sandwich graphene/silver nanowires/graphene thin film for high-performance electromagnetic interference shielding
,”
RSC Adv.
6
,
101283
101287
(
2016
).
39.
Y.
Cao
,
J.
Zhang
,
J.
Feng
, and
P.
Wu
, “
Compatibilization of immiscible polymer blends using graphene oxide sheets
,”
ACS Nano
5
(
7
),
5920
5927
(
2011
).
40.
A.
Graziano
,
S.
Jaffer
, and
M.
Sain
, “
Review on modification strategies of polyethylene/polypropylene immiscible thermoplastic polymer blends for enhancing their mechanical behavior
,”
J. Elastomers Plast.
51
,
291
(
2018
).
41.
Y.
Pan
,
X.
Liu
,
X.
Hao
, and
D. W.
Schubert
, “
Conductivity and phase morphology of carbon black-filled immiscible polymer blends under creep: An experimental and theoretical study
,”
Phys. Chem. Chem. Phys.
18
,
32125
(
2016
).
42.
J. C.
Grunlan
,
W. W.
Gerberich
, and
L. F.
Francis
, “
Lowering the percolation threshold of conductive composites using particulate polymer microstructure
,”
J. Appl. Polym. Sci.
80
,
692
705
(
2001
).
43.
C. Zhang, Z. Tang, X. An, S. Fang, S. Wu, and B. Guo, “Generic method to create segregated structures toward robust, flexible, highly conductive elastomer composites,”
ACS Appl. Mater. Interfaces
13
(
20
),
24154
24163
(
2021
)
44.
J.
Bouchet
,
C.
Carrot
,
J.
Guillet
,
G.
Boiteux
,
G.
Seytre
, and
M.
Pineri
, “
Conductive composites of UHMWPE and ceramics based on the segregated network concept
,”
Polym. Eng. Sci.
40
,
36
45
(
2000
).
45.
L.
Matzui
,
V.
Oliynyk
,
Y.
Milovanov
,
Y.
Mamunya
,
N.
Volynets
,
A.
Plyushch
, and
P.
Kuzhir
, “
Polyethylene composites with segregated carbon nanotubes network: Low frequency plasmons and high electromagnetic interference shielding efficiency
,”
Materials
13
,
1118
(
2020
).
46.
C.-H.
Cui
,
D.-X.
Yan
,
H.
Pang
,
X.
Xu
,
L.-C.
Jia
, and
Z.-M.
Li
, “
Formation of a segregated electrically conductive network structure in a low-melt-viscosity polymer for highly efficient electromagnetic interference shielding
,”
ACS Sustainable Chem. Eng.
4
,
4137
4145
(
2016
).
47.
D.
Feng
,
D.
Xu
,
Q.
Wang
, and
P.
Liu
, “
Highly stretchable electromagnetic interference (EMI) shielding segregated polyurethane/carbon nanotube composites fabricated by microwave selective sintering
,”
J. Mater. Chem. C
7
,
7938
(
2019
).
48.
F.
Shahzad
,
S. H.
Lee
,
S. M.
Hong
, and
C. M.
Koo
, “
Segregated reduced graphene oxide polymer composite as a high performance electromagnetic interference shield
,”
Res. Chem. Intermed.
44
,
4707
4719
(
2018
).
49.
S.-H.
Park
and
J.-H.
Ha
, “
Improved electromagnetic interference shielding properties through the use of segregate carbon nanotube networks
,”
Materials
12
,
1395
(
2019
).
50.
J.
Tang
,
F.
Ye
,
Y.
Xie
, and
P.
Liu
, “
Improved mechanical and electromagnetic interference shielding performance of segregated UHMWPE/CNTs via microwave-assisted sintering
,”
SAGE J. High Perform. Polym.
32(10), 1140–1149 (
2020
).
51.
A. M.
Anjaneyalu
,
A. S.
Zeraati
, and
U.
Sundararaj
, “
Enhanced electromagnetic interference shielding effectiveness of hybrid fillers by segregated structure
,”
AIP Conf. Proc.
2065
(
1
),
040009
(
2019
).
52.
H.
Cheng
,
C.
Cao
,
Q.
Zhang
,
Y.
Wang
,
Y.
Liu
,
B.
Huang
,
X.-L.
Sun
,
Y.
Guo
,
L.
Xiao
,
Q.
Chen
, and
Q.
Qian
, “
Enhancement of electromagnetic interference shielding performance and wear resistance of the UHMWPE/PP blend by constructing a segregated hybrid conductive carbon black–polymer network
,”
ACS Omega
2
(
6
),
15078
15088
(
2021
).
53.
L.-C.
Jia
,
D.-X.
Yan
,
X.
Jiang
,
H.
Pang
,
J.-F.
Gao
,
P.-G.
Ren
, and
Z.-M.
Li
, “
Synergistic effect of graphite and carbon nanotube on improved electromagnetic interference shielding performance in segregated composites
,”
Eng. Chem. Res.
57
(
35
),
11929
11938
(
2018
).
54.
F.
Sharif
,
M.
Arjmand
,
A. A.
Moud
,
U.
Sundararaj
, and
E. P. L.
Roberts
, “
Segregated hybrid poly(methyl methacrylate)/graphene/magnetite nano-composites for electromagnetic interference shielding
,”
ACS Appl. Mater. Interfaces
9
,
14171
14179
(
2017
).
55.
O.
Yakovenko
,
L.
Matzui
,
Y.
Perets
,
I.
Ovsiienko
,
O.
Brusylovets
,
L.
Vovchenko
,
P.
Szroeder
,
O.
Fesenko
, and
L.
Yatsenko
, “
Effects of dispersion and ultraviolet/ozonolysis functionalization of graphite nanoplatelets on the electrical properties of epoxy nanocomposites
,” in
Nanophysics, Nanophotonics, Surface Studies, and Applications
(
Springer
,
Cham
,
2016
), pp.
477
491
.
56.
L.
Vovchenko
,
L.
Matzui
,
V.
Oliynyk
, and
V.
Launetz
, “
The effect of filler morphology and distribution on electrical and shielding properties of graphite-epoxy composites
,”
Mol. Cryst. Liq. Cryst.
535
,
179
188
(
2011
).
57.
F. R.
Meshkini
,
O. V.
Ishchenko
,
A. G.
Dyachenko
,
O.
Bieda
,
S.
Gaidai
, and
V.
Lisnyak
, “
CO2 hydrogenation into CH4 over Ni–Fe catalysts
,”
Funct. Mater. Lett.
52
(
3
),
342
347
(
2020
).
58.
Y.
Mamunya
,
L.
Matzui
,
L.
Vovchenko
,
O.
Maruzhenko
,
V.
Oliynyk
,
S.
Pusz
,
U.
Szeluga
, and
B.
Kumanek
, “
Influence of conductive filler distribution on electrical conductivity and EMI shielding properties of nanocarbon composites
,”
Compos. Sci. Technol.
170
,
51
59
(
2019
).
59.
D.
Stauffer
and
A.
Aharony
,
Introduction to Percolation Theory
(
Taylor & Francis
,
London
,
1992
).
60.
U.
Ritter
,
Y.
Perets
,
L.
Matzui
,
L.
Vovchenko
,
Y.
Prylutskyy
, and
P.
Scharff
, “
The effect of boron nitride on electrical conductivity of nanocarbon-polymer composites
,”
J. Mater. Sci.
49
,
2098
2105
(
2014
).
61.
M. O.
Lisunova
,
Y. P.
Mamunya
,
N. I.
Lebovka
, and
A. V.
Melezhyk
, “
Percolation behavior of ultrahigh molecular weight polyethylene/multi-walled carbon nanotubes composites
,”
Eur. Polym. J.
43
(
3
),
949
958
(
2007
).
62.
R.
Zhang
,
M.
Baxendale
, and
T.
Peijs
, “
Universal resistivity–strain dependence of carbon nanotube/polymer composites
,”
Phys. Rev. B
76
,
195433
(
2007
).
63.
S. T.
Hsiao
,
C. C. M.
Ma
,
H. W.
Tien
,
W. H.
Liao
,
Y. S.
Wang
,
S. M.
Li
, and
Y. C.
Huang
, “
Using a non-covalent modification to prepare a high electromagnetic interference shielding performance graphene nanosheet/water-borne polyurethane composite
,”
Carbon
60
,
57
66
(
2013
).
64.
S.
Kashi
,
R.
Gupta
,
T.
Baum
,
N.
Kao
, and
S.
Bhattacharya
, “
Dielectric properties and electromagnetic interference shielding effectiveness of graphene-based biodegradable nanocomposites
,”
Mater. Des.
95
,
119
(
2016
).
65.
F.
Shahzad
,
S.
Yu
,
P.
Kumar
,
J.-W.
Lee
,
Y.-H.
Kim
,
S. M.
Hong
, and
C. M.
Koo
, “
Sulfur doped graphene/polystyrene nanocomposites for electromagnetic interference shielding
,”
Compos. Struct.
133
,
1267
(
2015
).
66.
J.
Ling
,
W.
Zhai
,
W.
Feng
,
B.
Shen
,
J.
Zhang
,
W.
Zheng
, and
S.
Facile
, “
Preparation of lightweight microcellular polyetherimide/graphene composite foams for electromagnetic interference shielding
,”
ACS Appl. Mater. Interfaces
5
,
2677
2684
(
2013
).
67.
D.-X.
Yan
,
P.-G.
Ren
,
H.
Pang
,
Q.
Fu
,
M.-B.
Yang
, and
Z.-M.
Li
, “
Efficient electromagnetic interference shielding of lightweight graphene/polystyrene composite
,”
J. Mater. Chem.
22
,
36
(
2012
).
68.
K.
Yao
,
J.
Gong
,
N.
Tian
,
Y.
Lin
,
X.
Wen
,
Z.
Jiang
,
H.
Na
, and
T.
Tang
, “
Flammability properties and electromagnetic interference shielding of PVC/graphene composites containing Fe3O4 nanoparticles
,”
RSC Adv.
5
(
4
),
31910
31919
(
2015
).
You do not currently have access to this content.