Laser-driven shock experiments were conducted at a synchrotron facility to investigate the dynamic response of polyurethane foam. These experiments were coupled to in situ x-ray imaging to radiograph foam deformations and to determine the propagation velocity of stress waves. To increase the amplitude and the duration of the pressure load generated by the laser–matter interaction, the front surface of the target was covered with a confining layer (water and BK7 glass). Preliminary calibration tests involving time-resolved velocity measurements were performed to calculate the ablation pressure on the front surface of foam samples. The calculated pressure loads were used as input data for hydrodynamic simulations, in which the foam is modeled using a homogeneous porous macroscopic model, and model predictions were compared with experimental results. A fair consistency was found for most experiments, while for the others, an overestimation of the applied pressure is suspected, likely due to a laser breakdown within the confining medium. Finally, post-shot x-ray tomography of the recovered samples showed permanent deformation of the foam, unlike what was observed under quasi-static compression, and revealed heavy damage in the vicinity of the loaded zone.

1.
L. J.
Gibson
and
M. F.
Ashby
,
Cellular Solids Structure and Properties, Cambridge Solid State Science Series
, 2nd ed. (
Cambridge University Press
,
1997
).
2.
V. P. W.
Shim
and
K. Y.
Yap
, “
Modelling impact deformation of foam-plate sandwich systems
,”
Int. J. Impact Eng.
19
,
615
636
(
1997
).
3.
V. P. W.
Shim
,
Z. H.
Tu
, and
C. T.
Lim
, “
Two-dimensional response of crushable polyurethane foam to low velocity impact
,”
Int. J. Impact Eng.
24
,
703
731
(
2000
).
4.
J. V.
Mane
,
S.
Chandra
,
S.
Sharma
,
H.
Ali
,
V. M.
Chavan
,
B. S.
Manjunath
, and
R. J.
Patel
, “
Mechanical property evaluation of polyurethane foam under quasi-static and dynamic strain rates- an experimental study
,”
Procedia Eng.
173
,
726
731
(
2017
).
5.
E.
Linul
,
D. A.
Şerban
,
L.
Marsavina
, and
T.
Sadowski
, “
Assessment of collapse diagrams of rigid polyurethane foams under dynamic loading conditions
,”
Arch. Civil Mech. Eng.
17
,
457
466
(
2017
).
6.
W.
Chen
,
F.
Lu
, and
N.
Winfree
, “
High-strain-rate compressive behavior of a rigid polyurethane foam with various densities
,”
Exp. Mech.
42
,
65
73
(
2002
).
7.
L. M.
Yang
and
V. P. W.
Shim
, “
A visco-hyperelastic constitutive description of elastomeric foam
,”
Int. J. Impact Eng.
30
,
1099
1110
(
2004
).
8.
A.
Pellegrino
,
V. L.
Tagarielli
,
R.
Gerlach
, and
N.
Petrinic
, “
The mechanical response of a syntactic polyurethane foam at low and high rates of strain
,”
Int. J. Impact Eng.
75
,
214
221
(
2015
).
9.
D.
Whisler
and
H.
Kim
, “
Experimental and simulated high strain dynamic loading of polyurethane foam
,”
Polym. Test.
41
,
219
230
(
2015
).
10.
P.
Li
,
Y. B.
Guo
,
M. W.
Zhou
, and
V. P. W.
Shim
, “
Response of anisotropic polyurethane foam to compression at different loading angles and strain rates
,”
Int. J. Impact Eng.
127
,
154
168
(
2019
).
11.
N.
Lelong
and
D.
Rochais
, “
Influence of microstructure on the dynamic behavior of a polyurethane foam with the material point method
,”
Materialia
5
,
100199
(
2019
).
12.
E.
Zaretsky
,
Z.
Asaf
,
E.
Ran
, and
F.
Aizik
, “
Impact response of high density flexible polyurethane foam
,”
Int. J. Impact Eng.
39
,
1
7
(
2012
).
13.
R.
Nasirzadeh
and
A. R.
Sabet
, “
Study of foam density variations in composite sandwich panels under high velocity impact loading
,”
Int. J. Impact Eng.
63
,
129
139
(
2014
).
14.
B.
Koohbor
,
A.
Kidane
,
W.-Y.
Lu
, and
M. A.
Sutton
, “
Investigation of the dynamic stress–strain response of compressible polymeric foam using a non-parametric analysis
,”
Int. J. Impact Engineering
91
,
170
182
(
2016
).
15.
A.
Taherkhani
,
M.
Sadighi
,
A. S.
Vanini
, and
M. Z.
Mahmoudabadi
, “
An experimental study of high-velocity impact on elastic–plastic crushable polyurethane foams
,”
Aerosp. Sci. Technol.
50
,
245
255
(
2016
).
16.
P.
Pradel
,
F.
Malaise
,
T.
de Rességuier
,
C.
Delhomme
,
G.
Le Blanc
, and
J. H.
Quessada
, “
Dynamic compaction of polyurethane foam: Experiments and modelling
,”
Eur. Phys. J.: Spec. Top.
227
,
3
16
(
2018
).
17.
P.
Pradel
,
F.
Malaise
,
T.
de Rességuier
,
C.
Delhomme
,
B.
Cadilhon
,
J.-H.
Quessada
, and
G.
Le Blanc
, “
Stress wave propagation and mitigation in two polymeric foams
,”
AIP Conf. Proc.
1979,
110015
(
2018
).
18.
P.
Pradel
,
F.
Malaise
, and
T.
de Rességuier
, “
Laser-driven shock experiments to investigate mitigation ability of polymeric foams
,”
EPJ Web Conf.
183
,
01045
(
2018
).
19.
S. P.
Marsh
, in
LASL Shock Hugoniot Data
, edited by
S. P.
Marsh
(
University of California Press
,
Berkeley
,
1980
).
20.
M. P.
Olbinado
,
V.
Cantelli
,
O.
Mathon
,
S.
Pascarelli
,
J.
Grenzer
,
A.
Pelka
,
M.
Roedel
,
I.
Prencipe
,
A. L.
Garcia
,
U.
Helbig
,
D.
Kraus
,
U.
Schramm
,
T.
Cowan
,
M.
Scheel
,
P.
Pradel
,
T.
de Rességuier
, and
A.
Rack
, “
Ultra high-speed x-ray imaging of laser-driven shock compression using synchrotron light
,”
J. Phys. D: Appl. Phys.
51
,
055601
(
2018
).
21.
M. P.
Olbinado
,
X.
Just
,
J.-L.
Gelet
,
P.
Lhuissier
,
M.
Scheel
,
P.
Vagovic
,
T.
Sato
,
R.
Graceffa
,
J.
Schulz
,
A.
Manusco
,
J.
Morse
, and
A.
Rack
, “
MHz frame rate hard X-ray phase-contrast imaging using synchrotron radiation
,”
Opt. Express
25
,
13857
13871
(
2017
).
22.
P.
Cloetens
,
R.
Barrett
,
J.
Baruchel
,
J.-P.
Guigay
, and
M.
Schlenker
, “
Phase objects in synchrotron radiation hard x-ray imaging
,”
J. Phys. D: Appl. Phys.
29
,
133
146
(
1996
).
23.
L.
Berthe
,
R.
Fabbro
,
P.
Peyre
,
L.
Tollier
, and
E.
Bartnicki
, “
Shock waves from a water-confined laser-generated plasma
,”
J. Appl. Phys.
82
,
2826
2832
(
1997
).
24.
R.
Fabbro
,
J.
Fournier
,
P.
Ballard
,
D.
Devaux
, and
J.
Virmont
, “
Physical study of laser-produced plasma in confined geometry
,”
J. Appl. Phys.
68
,
775
784
(
1990
).
25.
D.
Devaux
,
R.
Fabbro
,
L.
Tollier
, and
E.
Bartnicki
, “
Generation of shock waves by laser-induced plasma in confined geometry
,”
J. Appl. Phys.
74
,
2268
2273
(
1993
).
26.
A.
Sollier
,
Ph.D. thesis
,
Versailles St-Quentin University
,
2002
.
27.
L.
Berthe
,
R.
Fabbro
,
P.
Peyre
, and
E.
Bartnicki
, “
Wavelength dependent of laser shock-wave generation in the water-confinement regime
,”
J. Appl. Phys.
85
,
7552
7555
(
1999
).
28.
W. L.
Smith
,
J. H.
Bechtel
, and
N.
Bloembergen
, “
Picosecond laser-induced breakdown at 5321 and 3547 Å: Observation of frequency-dependent behavior
,”
Phys. Rev. B
15
,
4039
4055
(
1977
).
29.
M. A.
Meyers
,
Dynamic Behavior of Materials
(
John Wiley & Sons, Ltd
,
1994
).
30.
S.
Ravindran
,
B.
Koohbor
,
P.
Malchow
, and
A.
Kidane
, “
Experimental characterization of compaction wave propagation in cellular polymers
,”
Int. J. Solids Struct.
139–140
,
270
282
(
2018
).
31.
B.
Song
,
M. J.
Forrestal
, and
W.
Chen
, “
Dynamic and quasi-static propagation of compaction waves in a low-density epoxy foam
,”
Exp. Mech.
46
,
127
136
(
2006
).
32.
V. S.
Deshpande
and
N. A.
Fleck
, “
High strain rate compressive behaviour of aluminium alloy foams
,”
Int. J. Impact Eng.
24
,
277
298
(
2000
).
33.
B.
Koohbor
,
S.
Ravindran
, and
A.
Kidane
, “
Effects of cell-wall instability and local failure on the response of closed-cell polymeric foams subjected to dynamic loading
,”
Mech. Mater.
116
,
67
76
(
2018
).
34.
L.
Seaman
,
R. E.
Tokheim
,
D. R.
Curran
, “Computational representation of constitutive relations for porous materials,” Technical Report, Stanford Research Institute,
1974
.
You do not currently have access to this content.