This work reports on a pump–probe laser-based heating and sensing metrology to study the failure mechanisms of materials during extreme heat fluxes localized near surfaces, the localization of which is controlled by the focus of the laser beam and sensed by the reflection of a secondary probe laser. We focus the demonstration of these power density at failure tests on the damage mechanisms of commercially pure titanium metal during and after high heat fluxes induced from the absorbed laser energy. Using this steady-state thermoreflectance pump–probe metrology, a localized region of the material was irradiated at a low modulated frequency, while the average change in the thermoreflectance signal was monitored. We observe surface and cross-sectional oxidation of the titanium, revealing correlations between microstructural evolution events and shifts in thermoreflectance trends as a function of absorbed power density. Furthermore, the damage morphology was shown to be heavily influenced by the size of the heater (dictated by the radius of the pump laser beam), which controlled the relative degree of thermomechanical, melting, and oxidative decohesion failure mechanisms in the samples. The analysis of the temperature distribution coupled with the observed microstructural damage gives rise to a high-throughput experimental technique to induce desired deformation modes through cyclic thermal testing.

1.
W. G.
Fahrenholtz
and
G. E.
Hilmas
, “
Ultra-high temperature ceramics: Materials for extreme environments
,”
Scr. Mater.
129
,
94
99
(
2017
).
2.
M. M.
Opeka
,
I. G.
Talmy
, and
J. A.
Zaykoski
, “
Oxidation-based materials selection for 2000 °C+ hypersonic aerosurfaces: Theoretical considerations and historical experience
,”
J. Mater. Sci.
39
,
5887
5904
(
2004
).
3.
X.
Zhang
,
P.
Hu
,
J.
Han
, and
S.
Meng
, “
Ablation behavior of ZrB2-SiC ultra high temperature ceramics under simulated atmospheric re-entry conditions
,”
Compos. Sci. Technol.
68
,
1718
1726
(
2008
).
4.
L.
Pienti
,
D.
Sciti
,
L.
Silvestroni
,
A.
Cecere
, and
R.
Savino
, “
Ablation tests on HfC- and TaC-based ceramics for aeropropulsive applications
,”
J. Eur. Ceram. Soc.
35
,
1401
1411
(
2015
).
5.
M.
Azadi
,
G. H.
Farrahi
,
G.
Winter
, and
W.
Eichlseder
, “
Thermo-mechanical behaviours of light alloys in comparison to high temperature isothermal behaviours
,”
Mater. High Temp.
31
,
12
17
(
2014
).
6.
R. H.
Cook
and
R. P.
Skelton
, “
Environment-dependence of the mechanical properties of metals at high temperature
,”
Int. Metall. Rev.
19
,
199
222
(
1974
).
7.
M.
Bache
, “
A review of dwell sensitive fatigue in titanium alloys: The role of microstructure, texture and operating conditions
,”
Int. J. Fatigue
25
,
1079
1087
(
2003
).
8.
D.
Lee
and
E. W.
Hart
, “
Stress relaxation and mechanical behavior of metals
,”
Metall. Trans.
2
,
1245
1248
(
1971
).
9.
Y.
Li
,
Y.
Guo
,
H.
Hu
, and
Q.
Wei
, “
A critical assessment of high-temperature dynamic mechanical testing of metals
,”
Int. J. Impact Eng.
36
,
177
184
(
2009
).
10.
D. R.
Chichili
,
K. T.
Ramesh
, and
K. J.
Hemker
, “
The high-strain-rate response of alpha-titanium: Experiments, deformation mechanisms and modeling
,”
Acta Mater.
46
,
1025
1043
(
1998
).
11.
U.
Diebold
,
The Surface Science of Titanium Dioxide
(
North-Holland
,
2003
), see https://www.sciencedirect.com/science/article/pii/S0167572902001000 (accessed March 8, 2018).
12.
C.
Leyens
and
M.
Peters
,
Titanium and Titanium Alloys
(
Wiley
,
2003
).
13.
P.
Kofstad
, “
High-temperature oxidation of titanium
,”
J. Less-Common Met.
12
,
449
464
(
1967
).
14.
R.
Bansal
,
J. K.
Singh
,
V.
Singh
,
D. D. N.
Singh
, and
P.
Das
, “
Optimization of oxidation temperature for commercially pure titanium to achieve improved corrosion resistance
,”
J. Mater. Eng. Perform.
26
,
969
977
(
2017
).
15.
M. V.
Diamanti
,
S.
Codeluppi
,
A.
Cordioli
, and
M. P.
Pedeferri
, “
Effect of thermal oxidation on titanium oxides’ characteristics
,”
J. Exp. Nanosci.
4
,
365
372
(
2009
).
16.
J.
Dai
,
J.
Zhu
,
C.
Chen
, and
F.
Weng
, “
High temperature oxidation behavior and research status of modifications on improving high temperature oxidation resistance of titanium alloys and titanium aluminides: A review
,”
J. Alloys Compd.
685
,
784
798
(
2016
).
17.
Y.
Mizuno
,
F. K.
King
,
Y.
Yamauchi
,
T.
Homma
,
A.
Tanaka
,
Y.
Takakuwa
, and
T.
Momose
, “
Temperature dependence of oxide decomposition on titanium surfaces in ultrahigh vacuum
,”
J. Vac. Sci. Technol. A
20
,
1716
1721
(
2002
).
18.
R. R.
Boyer
, “
An overview on the use of titanium in the aerospace industry
,”
Mater. Sci. Eng., A.
213
,
103
114
(
1996
).
19.
J. A.
Daleo
,
K. A.
Ellison
, and
D. H.
Boone
, “
Metallurgical considerations for life assessment and the safe refurbishment and requalification of gas turbine blades
,”
J. Eng. Gas Turbines Power
124
,
571
579
(
2002
).
20.
B.
Fischer
,
S.
Vorberg
,
R.
Völkl
,
M.
Beschliesser
, and
A.
Hoffmann
, “
Creep and tensile tests on refractory metals at extremely high temperatures
,”
Int. J. Refract. Met. Hard Mater.
24
,
292
297
(
2006
).
21.
S.
Siddique
,
M.
Imran
, and
F.
Walther
, “
Very high cycle fatigue and fatigue crack propagation behavior of selective laser melted AlSi12 alloy
,”
Int. J. Fatigue
94
,
246
254
(
2017
).
22.
A. J.
Schmidt
,
X.
Chen
, and
G.
Chen
, “
Pulse accumulation, radial heat conduction, and anisotropic thermal conductivity in pump-probe transient thermoreflectance
,”
Rev. Sci. Instrum.
79
,
114902
(
2008
).
23.
C. A.
Paddock
and
G. L.
Eesley
, “
Transient thermoreflectance from thin metal films
,”
J. Appl. Phys.
60
,
285
290
(
1986
).
24.
D. G.
Cahill
, “
Analysis of heat flow in layered structures for time-domain thermoreflectance
,”
Rev. Sci. Instrum.
75
,
5119
5122
(
2004
).
25.
J. L.
Braun
,
C. J.
Szwejkowski
,
A.
Giri
, and
P. E.
Hopkins
, “
On the steady-state temperature rise during laser heating of multilayer thin films in optical pump-probe techniques
,”
J. Heat Transfer
140
,
052801
(
2018
).
26.
J. L.
Braun
,
D. H.
Olson
,
J. T.
Gaskins
, and
P. E.
Hopkins
, “
A steady-state thermoreflectance method to measure thermal conductivity
,”
Rev. Sci. Instrum.
90
,
024905
(
2019
).
27.
L.
Lavisse
,
D.
Grevey
,
C.
Langlade
, and
B.
Vannes
, “
The early stage of the laser-induced oxidation of titanium substrates
,”
Appl. Surf. Sci.
186
,
150
155
(
2002
).
28.
G. V.
Chertihin
and
L.
Andrews
, “
Reactions of laser ablated titanium, zirconium, and hafnium atoms with oxygen molecules in condensing argon
,”
J. Phys. Chem.
99
,
6356
6366
(
1995
).
29.
T. N.
Baker
, “
Laser surface modification of titanium alloys
,” in
Surface Engineering of Light Alloys: Aluminium, Magnesium and Titanium Alloys
(CRC Press,
2010
), Vol. 12, pp.
398
443
.
30.
L.
Lavisse
,
J. M.
Jouvard
,
L.
Imhoff
,
O.
Heintz
,
J.
Korntheuer
,
C.
Langlade
,
S.
Bourgeois
, and
M. C. M.
de Lucas
, “
Pulsed laser growth and characterization of thin films on titanium substrates
,”
Appl. Surf. Sci.
253
,
8226
8230
(
2007
).
31.
Y. S.
Tian
,
C. Z.
Chen
,
D. Y.
Wang
, and
T. Q.
Lei
, “
Laser surface modification of titanium alloys—A review
,”
Surf. Rev. Lett.
12
,
123
130
(
2005
).
32.
B.
Baufeld
,
E.
Brandl
, and
O.
Van Der Biest
, “
Wire based additive layer manufacturing: Comparison of microstructure and mechanical properties of Ti-6Al-4V components fabricated by laser-beam deposition and shaped metal deposition
,”
J. Mater. Process. Technol.
211
,
1146
1158
(
2011
).
33.
G.
Kasperovich
and
J.
Hausmann
, “
Improvement of fatigue resistance and ductility of TiAl6V4 processed by selective laser melting
,”
J. Mater. Process. Technol.
220
,
202
214
(
2015
).
34.
J. L.
Braun
and
P. E.
Hopkins
, “
Upper limit to the thermal penetration depth during modulated heating of multilayer thin films with pulsed and continuous wave lasers: A numerical study
,”
J. Appl. Phys.
121
,
175107
(
2017
).
35.
W. E.
Frazier
, “
Metal additive manufacturing: A review
,”
J. Mater. Eng. Perform.
23
,
1917
1928
(
2014
).
36.
Y.
Kok
,
X. P.
Tan
,
P.
Wang
,
M. L. S.
Nai
,
N. H.
Loh
,
E.
Liu
, and
S. B.
Tor
, “
Anisotropy and heterogeneity of microstructure and mechanical properties in metal additive manufacturing: A critical review
,”
Mater. Des.
139
,
565
586
(
2018
).
37.
B.
Dutta
and
F. H. S.
Froes
, “
The additive manufacturing (AM) of titanium alloys
,”
Met. Powder Rep.
72
,
96
106
(
2017
).
38.
W.-H.
Wu
,
C.-C.
Yang
, and
J.-W.
Yeh
, “
Industrial development of high-entropy alloys
,”
Ann. Chim. Sci. Mater.
31
,
737
747
(
2006
).
39.
E.
Castle
,
T.
Csanádi
,
S.
Grasso
,
J.
Dusza
, and
M.
Reece
, “
Processing and properties of high-entropy ultra-high temperature carbides
,”
Sci. Rep.
8
,
8609
(
2018
).
40.
D.
Miracle
,
J.
Miller
,
O.
Senkov
,
C.
Woodward
,
M.
Uchic
, and
J.
Tiley
, “
Exploration and development of high entropy alloys for structural applications
,”
Entropy
16
,
494
525
(
2014
).
41.
A. H.
Firester
,
M. E.
Heller
, and
P.
Sheng
, “
Knife-edge scanning measurements of subwavelength focused light beams
,”
Appl. Opt.
16
,
1971
(
1977
).
42.
P. E.
Hopkins
, “
Influence of electron-boundary scattering on thermoreflectance calculations after intra- and interband transitions induced by short-pulsed laser absorption
,”
Phys. Rev. B
81
,
035413
(
2010
).
43.
S.
Dilhaire
,
S.
Grauby
, and
W.
Claeys
, “
Calibration procedure for temperature measurements by thermoreflectance under high magnification conditions
,”
Appl. Phys. Lett.
84
,
822
824
(
2004
).
44.
B. F.
Donovan
,
J. A.
Tomko
,
A.
Giri
,
D. H.
Olson
,
J. L.
Braun
,
J. T.
Gaskins
, and
P. E.
Hopkins
, “
Localized thin film damage sourced and monitored via pump-probe modulated thermoreflectance
,”
Rev. Sci. Instrum.
88
,
054903
(
2017
).
45.
F.
Cverna
,
ASM Ready Reference: Thermal Properties of Metals
(
ASM International
,
Materials Park
,
OH
,
2002
).
46.
C. J.
Boxley
,
H. S.
White
,
C. E.
Gardner
, and
J. V.
Macpherson
, “
Nanoscale imaging of the electronic conductivity of the native oxide film on titanium using conducting atomic force microscopy
,”
J. Phys. Chem. B.
107
,
9677
9680
(
2003
).
47.
R.
Dutton
,
A Review of the Low-Temperature Creep Behaviour of Titanium
(
Whiteshell Laboratories
,
1996
).
48.
A.
Takano
and
K.
Ueda
, “
A study of the oxygen adsorption process on a titanium single crystal surface by electron stimulated desorption
,”
Surf. Sci.
242
,
450
453
(
1991
).
49.
D. P.
Adams
,
R. D.
Murphy
,
D. J.
Saiz
,
D. A.
Hirschfeld
,
M. A.
Rodriguez
,
P. G.
Kotula
, and
B. H.
Jared
, “
Nanosecond pulsed laser irradiation of titanium: Oxide growth and effects on underlying metal
,”
Surf. Coat. Technol.
248
,
38
45
(
2014
).
50.
G.
Bertrand
,
K.
Jarraya
, and
J. M.
Chaix
, “
Morphology of oxide scales formed on titanium
,”
Oxid. Met.
21
,
1
19
(
1984
).
51.
C. J.
Beevers
,
M. R.
Warren
, and
D. V.
Edmonds
, “
Fracture of titanium-hydrogen alloys
,”
J. Less Common Met.
14
,
387
396
(
1968
).
52.
T.
Furuhara
,
H. J.
Lee
,
E. S. K.
Menon
, and
H. I.
Aaronson
, “
Interphase boundary structures associated with diffusional phase transformations in Ti-base alloys
,”
Metall. Trans. A.
21
,
1627
1643
(
1990
).
53.
X.
Feng
,
X.
Huang
, and
X.
Wang
, “
Thermal conductivity and secondary porosity of single anatase TiO2 nanowire
,”
Nanotechnology
23
,
185701
(
2012
).
54.
N.
Okinaka
and
T.
Akiyama
, “
Latent property of defect-controlled metal oxide: Nonstoichiometric titanium oxides as prospective material for high-temperature thermoelectric conversion
,”
Jpn. J. Appl. Phys.
45
,
7009
7010
(
2006
).
55.
Y. S.
Touloukian
,
Thermal Conductivity: Nonmetallic Solids
, Thermophysical Properties of Matter Vol. 2 (
Plenum
,
1970
), pp.
183
193
.
56.
B. F.
Donovan
,
D. M.
Long
,
A.
Moballegh
,
N.
Creange
,
E. C.
Dickey
, and
P. E.
Hopkins
, “
Impact of intrinsic point defect concentration on thermal transport in titanium dioxide
,”
Acta Mater.
127
,
491
497
(
2017
).
57.
E. A.
Scott
,
J. T.
Gaskins
, and
S. W.
King
, “
Thermal conductivity and thermal boundary resistance of atomic layer deposited high-k dielectric aluminum oxide, hafnium oxide, and titanium oxide thin films on silicon on silicon
,”
APL Mater.
6
,
058302
(
2018
).
58.
Y.
Wang
,
J. Y.
Park
,
Y. K.
Koh
, and
D. G.
Cahill
, “
Thermoreflectance of metal transducers for time-domain thermoreflectance
,”
J. Appl. Phys.
108
,
043507
(
2010
).
59.
S.
Zimmermann
,
U.
Specht
,
L.
Spieß
,
H.
Romanus
,
S.
Krischok
,
M.
Himmerlich
, and
J.
Ihde
, “
Improved adhesion at titanium surfaces via laser-induced surface oxidation and roughening
,”
Mater. Sci. Eng., A
558
,
755
760
(
2012
).
60.
M. N.
Ghazzal
,
N.
Chaoui
,
M.
Genet
,
E. M.
Gaigneaux
, and
D.
Robert
, “
Effect of compressive stress inducing a band gap narrowing on the photoinduced activities of sol-gel TiO2 films
,”
Thin Solid Films
520
,
1147
1154
(
2011
).
61.
G.
Rajender
and
P. K.
Giri
, “
Strain induced phase formation, microstructural evolution and bandgap narrowing in strained TiO2 nanocrystals grown by ball milling
,”
J. Alloys Compd.
676
,
591
600
(
2016
).
62.
A.
Moridi
,
H.
Ruan
,
L. C.
Zhang
, and
M.
Liu
, “
International journal of solids and structures residual stresses in thin film systems: Effects of lattice mismatch, thermal mismatch and interface dislocations
,”
Int. J. Solids Struct.
50
,
3562
3569
(
2013
).
63.
M.
Seifi
,
A.
Salem
,
D.
Satko
,
J.
Shaffer
, and
J. J.
Lewandowski
, “
Defect distribution and microstructure heterogeneity effects on fracture resistance and fatigue behavior of EBM Ti–6Al–4V
,”
Int. J. Fatigue
94
,
263
287
(
2017
).
64.
T.
Lee
,
J. H.
Kim
,
S. L.
Semiatin
, and
C. S.
Lee
, “
Internal-variable analysis of high-temperature deformation behavior of Ti-6Al-4V: A comparative study of the strain-rate-jump and load-relaxation tests
,”
Mater. Sci. Eng., A
562
,
180
189
(
2013
).
65.
R. E.
Reed-Hill
,
C. V.
Iswaran
, and
M. J.
Kaufman
, “
A power law model for the flow stress and strain-rate sensitivity in CP titanium
,”
Scr. Metall. Mater.
33
,
157
162
(
1995
).
66.
L. B.
Freund
and
S.
Suresh
,
Thin Film Materials: Stress, Defect Formation and Surface Evolution
(
Cambridge University Press
,
Cambridge
,
2004
).
67.
L. H.
Chong
,
K.
Mallik
,
C. H.
de Groot
, and
R.
Kersting
, “
The structural and electrical properties of thermally grown TiO2 thin films related content
,”
J. Phys.: Condens. Matter
18
,
645
657
(
2006
).
68.
C.-C.
Ting
,
S.-Y.
Chen
, and
D.-M.
Liu
, “
Preferential growth of thin rutile TiO2 films upon thermal oxidation of sputtered Ti films
,”
Thin Solid Films
402
,
290
295
(
2002
).
69.
C.-C.
Ting
,
S.-Y.
Chen
, and
D.-M.
Liu
, “
Structural evolution and optical properties of TiO2 thin films prepared by thermal oxidation of sputtered Ti films
,”
J. Appl. Phys.
88
,
4628
4633
(
2000
).
70.
A. K.
Vijh
, “
Relationship between activation energies for the thermal oxidation of metals and the semiconductivity of the oxides
,”
J. Mater. Sci.
9
,
985
988
(
1974
).
71.
S.
Yu
and
H.-S. P.
Wong
, “
A phenomenological model for the reset mechanism of metal oxide RRAM
,”
IEEE Electron Device Lett.
31
,
1455
1457
(
2010
).
72.
L. B.
Freund
, “
Substrate curvature due to thin film mismatch strain in the nonlinear deformation range
,”
J. Mech. Phys. Solids
48
,
1159
1174
(
2000
).
73.
H.
Gao
, “
Some general properties of stress-driven surface evolution in a heteroepitaxial thin film structure
,”
J. Mech. Phys. Solids
42
,
741
772
(
1994
).

Supplementary Material

You do not currently have access to this content.