Predictions of ultrahigh thermal conductivity in boron arsenide using first-principles calculations have motivated research to synthesize crystals and investigate their properties. In 2018, three groups reported synthesizing small single crystals of boron arsenide that exhibit thermal conductivity of 700–1300 W m−1 K−1 at room temperature. The progress in crystal growth has attracted significant attention and has inspired additional theoretical and experimental research. This brief review provides an overview of recent theoretical and experimental studies on boron arsenide, mostly since 2018. Progress in theoretical calculations, synthesis methods, characterizations, physical properties, and potential applications are presented, followed by a discussion of the remaining challenges and outlook for boron arsenide research.

1.
D. A.
Broido
,
L.
Lindsay
, and
T. L.
Reinecke
, “
Ab initio study of the unusual thermal transport properties of boron arsenide and related materials
,”
Phys. Rev. B
88
,
214303
(
2013
).
2.
X.
Chen
,
C.
Li
,
F.
Tian
,
G. A.
Gamage
,
S.
Sullivan
,
J.
Zhou
,
D.
Broido
,
Z.
Ren
, and
L.
Shi
, “
Thermal expansion coefficient and lattice anharmonicity of cubic boron arsenide
,”
Phys. Rev. Appl.
11
,
064070
(
2019
).
3.
S.
Li
,
K. M.
Taddei
,
X.
Wang
,
H.
Wu
,
J.
Neuefeind
,
D.
Zackaria
,
X.
Liu
,
C.
Dela Cruz
, and
B.
Lv
, “
Thermal expansion coefficients of high thermal conducting BAs and BP materials
,”
Appl. Phys. Lett.
115
,
011901
(
2019
).
4.
J. S.
Kang
,
M.
Li
,
H.
Wu
,
H.
Nguyen
, and
Y.
Hu
, “
Basic physical properties of cubic boron arsenide
,”
Appl. Phys. Lett.
115
,
122103
(
2019
).
5.
L.
Lindsay
,
D. A.
Broido
, and
T. L.
Reinecke
, “
First-principles determination of ultrahigh thermal conductivity of boron arsenide: A competitor for diamond?
,”
Phys. Rev. Lett.
111
,
025901
(
2013
).
6.
T.
Feng
,
L.
Lindsay
, and
X.
Ruan
, “
Four-phonon scattering significantly reduces intrinsic thermal conductivity of solids
,”
Phys. Rev. B
96
,
161201(R)
(
2017
).
7.
J. S.
Kang
,
M.
Li
,
H.
Wu
,
H.
Nguyen
, and
Y.
Hu
, “
Experimental observation of high thermal conductivity in boron arsenide
,”
Science
361
,
575
578
(
2018
).
8.
S.
Li
,
Q.
Zheng
,
Y.
Lv
,
X.
Liu
,
X.
Wang
,
P. Y.
Huang
,
D. G.
Cahill
, and
B.
Lv
, “
High thermal conductivity in cubic boron arsenide crystals
,”
Science
361
,
579
581
(
2018
).
9.
F.
Tian
,
B.
Song
,
X.
Chen
,
N. K.
Ravichandran
,
Y.
Lv
,
K.
Chen
,
S.
Sullivan
,
J.
Kim
,
Y.
Zhou
,
T. H.
Liu
,
M.
Goni
,
Z.
Ding
,
J.
Sun
,
G. A. G.
Udalamatta Gamage
,
H.
Sun
,
H.
Ziyaee
,
S.
Huyan
,
L.
Deng
,
J.
Zhou
,
A. J.
Schmidt
,
S.
Chen
,
C. W.
Chu
,
P. Y.
Huang
,
D.
Broido
,
L.
Shi
,
G.
Chen
, and
Z.
Ren
, “
Unusual high thermal conductivity in boron arsenide bulk crystals
,”
Science
361
,
582
585
(
2018
).
10.
F.
Tian
and
Z.
Ren
, “
High thermal conductivity in boron arsenide: From prediction to reality
,”
Angew. Chem. Int. Ed. Engl.
58
,
5824
5831
(
2019
).
11.
M.
Dramićanin
,
Luminescence Thermometry Methods, Materials, and Applications
(
Woodhead Publishing
,
2018
).
12.
C.
Dames
, “
Ultrahigh thermal conductivity confirmed in boron arsenide
,”
Science
361
,
549
550
(
2018
).
13.
K.
Chen
,
B.
Song
,
N. K.
Ravichandran
,
Q.
Zheng
,
X.
Chen
,
H.
Lee
,
H.
Sun
,
S.
Li
,
G. A. G. U.
Gamage
,
F.
Tian
,
Z.
Ding
,
Q.
Song
,
A.
Rai
,
H.
Wu
,
P.
Koirala
,
A. J.
Schmidt
,
K.
Watanabe
,
B.
Lv
,
Z.
Ren
,
L.
Shi
,
D. G.
Cahill
,
T.
Taniguchi
,
D.
Broido
, and
G.
Chen
, “
Ultrahigh thermal conductivity in isotope-enriched cubic boron nitride
,”
Science
367
,
555
559
(
2020
).
14.
N. H.
Protik
,
J.
Carrete
,
N. A.
Katcho
,
N.
Mingo
, and
D.
Broido
, “
Ab initio study of the effect of vacancies on the thermal conductivity of boron arsenide
,”
Phys. Rev. B
94
,
045207
(
2016
).
15.
J.
Kim
,
D. A.
Evans
,
D. P.
Sellan
,
O. M.
Williams
,
E.
Ou
,
A. H.
Cowley
, and
L.
Shi
, “
Thermal and thermoelectric transport measurements of an individual boron arsenide microstructure
,”
Appl. Phys. Lett.
108
,
201905
(
2016
).
16.
B.
Lv
,
Y.
Lan
,
X.
Wang
,
Q.
Zhang
,
Y.
Hu
,
A. J.
Jacobson
,
D.
Broido
,
G.
Chen
,
Z.
Ren
, and
C.-W.
Chu
, “
Experimental study of the proposed super-thermal-conductor: BAs
,”
Appl. Phys. Lett.
106
,
074105
(
2015
).
17.
Q.
Zheng
,
C. A.
Polanco
,
M. H.
Du
,
L. R.
Lindsay
,
M.
Chi
,
J.
Yan
, and
B. C.
Sales
, “
Antisite pairs suppress the thermal conductivity of BAs
,”
Phys. Rev. Lett.
121
,
105901
(
2018
).
18.
J. L.
Lyons
,
J. B.
Varley
,
E. R.
Glaser
,
J. A.
FreitasJr
,
J. C.
Culbertson
,
F.
Tian
,
G. A.
Gamage
,
H.
Sun
,
H.
Ziyaee
, and
Z.
Ren
, “
Impurity-derived p-type conductivity in cubic boron arsenide
,”
Appl. Phys. Lett.
113
,
251902
(
2018
).
19.
J. T.
Torvik
, in
III-Nitride Semiconductors Electrical, Structural and Defects Properties
, edited by
O.
Manasreh
(
Elsevier
,
Amsterdam
,
2000
), pp.
17
49
.
20.
S.
Wang
,
S. F.
Swingle
,
H.
Ye
,
F. R.
Fan
,
A. H.
Cowley
, and
A. J.
Bard
, “
Synthesis and characterization of a p-type boron arsenide photoelectrode
,”
J. Am. Chem. Soc.
134
,
11056
11059
(
2012
).
21.
I. H.
Nwigboji
,
Y.
Malozovsky
,
L.
Franklin
, and
D.
Bagayoko
, “
Calculated electronic, transport, and related properties of zinc blende boron arsenide (zb-BAs)
,”
J. Appl. Phys.
120
,
145701
(
2016
).
22.
S.
Chae
,
K.
Mengle
,
J. T.
Heron
, and
E.
Kioupakis
, “
Point defects and dopants of boron arsenide from first-principles calculations: Donor compensation and doping asymmetry
,”
Appl. Phys. Lett.
113
,
212101
(
2018
).
23.
M.
Fava
,
N. H.
Protik
,
C.
Li
,
N. K.
Ravichandran
,
J.
Carrete
,
A.
van Roekeghem
,
G. K. H.
Madsen
,
N.
Mingo
, and
D.
Broido
, “
How dopants limit the ultrahigh thermal conductivity of boron arsenide: A first principles study
,”
npj Comput. Mater.
7
,
54
(
2021
).
24.
X.
Chen
,
C.
Li
,
Y.
Xu
,
A.
Dolocan
,
G.
Seward
,
A.
Van Roekeghem
,
F.
Tian
,
J.
Xing
,
S.
Guo
,
N.
Ni
,
Z.
Ren
,
J.
Zhou
,
N.
Mingo
,
D.
Broido
, and
L.
Shi
, “
Effects of impurities on the thermal and electrical transport properties of cubic boron arsenide
,”
Chem. Mater.
33
,
6974
6982
(
2021
).
25.
K.
Bushick
,
K.
Mengle
,
N.
Sanders
, and
E.
Kioupakis
, “
Band structure and carrier effective masses of boron arsenide: Effects of quasiparticle and spin-orbit coupling corrections
,”
Appl. Phys. Lett.
114
,
022101
(
2019
).
26.
G. A.
Gamage
,
K.
Chen
,
G.
Chen
,
F.
Tian
, and
Z.
Ren
, “
Effect of nucleation sites on the growth and quality of single-crystal boron arsenide
,”
Mater. Today Phys.
11
,
100160
(
2019
).
27.
J.
Xing
,
X.
Chen
,
Y.
Zhou
,
J. C.
Culbertson
,
J. A.
FreitasJr
,
E. R.
Glaser
,
J.
Zhou
,
L.
Shi
, and
N.
Ni
, “
Multimillimeter-sized cubic boron arsenide grown by chemical vapor transport via a tellurium tetraiodide transport agent
,”
Appl. Phys. Lett.
112
,
261901
(
2018
).
28.
F.
Tian
,
B.
Song
,
B.
Lv
,
J.
Sun
,
S.
Huyan
,
Q.
Wu
,
J.
Mao
,
Y.
Ni
,
Z.
Ding
,
S.
Huberman
,
T.-H.
Liu
,
G.
Chen
,
S.
Chen
,
C.-W.
Chu
, and
Z.
Ren
, “
Seeded growth of boron arsenide single crystals with high thermal conductivity
,”
Appl. Phys. Lett.
112
,
031903
(
2018
).
29.
J.
Xing
,
E. R.
Glaser
,
B.
Song
,
J. C.
Culbertson
,
J. A.
FreitasJr
,
R. A.
Duncan
,
K. A.
Nelson
,
G.
Chen
, and
N.
Ni
, “
Gas-pressure chemical vapor transport growth of millimeter-sized c-BAs single crystals with moderate thermal conductivity
,”
Appl. Phys. Lett.
112
,
241903
(
2018
).
30.
G. A.
Gamage
,
H.
Sun
,
H.
Ziyaee
,
F.
Tian
, and
Z.
Ren
, “
Effect of boron sources on the growth of boron arsenide single crystals by chemical vapor transport
,”
Appl. Phys. Lett.
115
,
092103
(
2019
).
31.
H.
Sun
,
K.
Chen
,
G. A.
Gamage
,
H.
Ziyaee
,
F.
Wang
,
Y.
Wang
,
V. G.
Hadjiev
,
F.
Tian
,
G.
Chen
, and
Z.
Ren
, “
Boron isotope effect on the thermal conductivity of boron arsenide single crystals
,”
Mater. Today Phys.
11
,
100169
(
2019
).
32.
L.
Lindsay
,
D. A.
Broido
, and
T. L.
Reinecke
, “
Phonon-isotope scattering and thermal conductivity in materials with a large isotope effect: A first-principles study
,”
Phys. Rev. B
88
,
144306
(
2013
).
33.
L.
Wei
,
P. K.
Kuo
,
R. L.
Thomas
,
T. R.
Anthony
, and
W. F.
Banholzer
, “
Thermal conductivity of isotopically modified single crystal diamond
,”
Phys. Rev. Lett.
70
,
3764
3767
(
1993
).
34.
D. G.
Cahill
, “
Analysis of heat flow in layered structures for time-domain thermoreflectance
,”
Rev. Sci. Instrum.
75
,
5119
5122
(
2004
).
35.
S.
Yue
,
G. A.
Gamage
,
M.
Mohebinia
,
D.
Mayerich
,
V.
Talari
,
Y.
Deng
,
F.
Tian
,
S. Y.
Dai
,
H.
Sun
,
V. G.
Hadjiev
,
W.
Zhang
,
G.
Feng
,
J.
Hu
,
D.
Liu
,
Z.
Wang
,
Z.
Ren
, and
J.
Bao
, “
Photoluminescence mapping and time-domain thermo-photoluminescence for rapid imaging and measurement of thermal conductivity of boron arsenide
,”
Mater. Today Phys.
13
,
100194
(
2020
).
36.
P. Y.
Yu
and
M.
Cardona
, in
Fundamentals of Semiconductors Physics and Materials Properties
, edited by
P. Y.
Yu
and
M.
Cardona
(
Springer Berlin Heidelberg
,
Berlin
,
2010
), pp.
17
106
.
37.
P.
Wurfel
, “
The chemical potential of radiation
,”
J. Phys. C Solid State Phys.
15
,
3967
3985
(
1982
).
38.
T.-H.
Liu
,
B.
Song
,
L.
Meroueh
,
Z.
Ding
,
Q.
Song
,
J.
Zhou
,
M.
Li
, and
G.
Chen
, “
Simultaneously high electron and hole mobilities in cubic boron-V compounds: BP, BAs, and BSb
,”
Phys. Rev. B
98
,
081203
(
2018
).
39.
K.
Bushick
,
S.
Chae
,
Z.
Deng
,
J. T.
Heron
, and
E.
Kioupakis
, “
Boron arsenide heterostructures: Lattice-matched heterointerfaces and strain effects on band alignments and mobility
,”
npj Comput. Mater.
6
,
3
(
2020
).
40.
H.
Lee
,
G. A.
Gamage
,
J. L.
Lyons
,
F.
Tian
,
B.
Smith
,
E. R.
Glaser
,
Z.
Ren
, and
L.
Shi
, “
Electronic structure of cubic boron arsenide probed by scanning tunneling spectroscopy
,”
J. Phys. D: Appl. Phys.
54
,
31LT01
(
2021
).
41.
G.
Cox
,
D.
Szynka
,
U.
Poppe
,
K. H.
Graf
,
K.
Urban
,
C.
Kisielowski-Kemmerich
,
J.
Krüger
, and
H.
Alexander
, “
Scanning tunneling microscopy of crystal dislocations in gallium arsenide
,”
Phys. Rev. Lett.
64
,
2402
2405
(
1990
).
42.
B.
Song
,
K.
Chen
,
K.
Bushick
,
K. A.
Mengle
,
F.
Tian
,
G. A. G. U.
Gamage
,
Z.
Ren
,
E.
Kioupakis
, and
G.
Chen
, “
Optical properties of cubic boron arsenide
,”
Appl. Phys. Lett.
116
,
141903
(
2020
).
43.
N. K.
Ravichandran
and
D.
Broido
, “
Non-monotonic pressure dependence of the thermal conductivity of boron arsenide
,”
Nat. Commun.
10
,
827
(
2019
).
44.
X.
Meng
,
A.
Singh
,
R.
Juneja
,
Y.
Zhang
,
F.
Tian
,
Z.
Ren
,
A. K.
Singh
,
L.
Shi
,
J. F.
Lin
, and
Y.
Wang
, “
Pressure-dependent behavior of defect-modulated band structure in boron arsenide
,”
Adv. Mater.
32
,
2001942
(
2020
).
45.
F.
Tian
,
K.
Luo
,
C.
Xie
,
B.
Liu
,
X.
Liang
,
L.
Wang
,
G. A.
Gamage
,
H.
Sun
,
H.
Ziyaee
,
J.
Sun
,
Z.
Zhao
,
B.
Xu
,
G.
Gao
,
X.-F.
Zhou
, and
Z.
Ren
, “
Mechanical properties of boron arsenide single crystal
,”
Appl. Phys. Lett.
114
,
131903
(
2019
).
46.
F.
Benkabou
,
C.
Chikr
,
Z. H.
Aourag
,
P. J.
Becker
, and
M.
Certier
, “
Atomistic study of zinc-blende BAs from molecular dynamics
,”
Phys. Lett. A
252
,
71
76
(
1999
).
47.
E. D.
Pierron
,
D. L.
Parker
, and
J. B.
McNeely
, “
Coefficient of expansion of GaAs, GaP, and Ga(As, P) compounds from −62° to 200 °C
,”
J. Appl. Phys.
38
,
4669
4671
(
1967
).
48.
M.
Ettenberg
and
R. J.
Paff
, “
Thermal expansion of AlAs
,”
J. Appl. Phys.
41
,
3926
3927
(
1970
).
49.
T.
Mizutani
,
J.
Ohsawa
,
T.
Nishinaga
, and
S.
Uchiyama
, “
Thermal expansion coefficient of boron monophosphide
,”
Jpn. J. Appl. Phys.
15
,
1305
1308
(
1976
).
50.
G. A.
Slack
and
S. F.
Bartram
, “
Thermal expansion of some diamondlike crystals
,”
J. Appl. Phys.
46
,
89
98
(
1975
).
51.
H.
Watanabe
,
N.
Yamada
, and
M.
Okaji
, “
Linear thermal expansion coefficient of silicon from 293 to 1000 K
,”
Int. J. Thermophys.
25
,
221
236
(
2004
).
52.
K.
Haruna
,
H.
Maeta
,
K.
Ohashi
, and
T.
Koike
, “
Thermal expansion coefficient of synthetic diamond single crystal at low temperatures
,”
Jpn. J. Appl. Phys.
31
,
2527
2529
(
1992
).
53.
J. A.
Perri
,
S.
La Placa
, and
B.
Post
, “
New group III-group V compounds: BP and BAs
,”
Acta Crystallogr.
11
,
310
(
1958
).
54.
J. S.
Kang
,
M.
Li
,
H.
Wu
,
H.
Nguyen
,
T.
Aoki
, and
Y.
Hu
, “
Integration of boron arsenide cooling substrates into gallium nitride devices
,”
Nat. Electron.
4
,
416
423
(
2021
).
55.
M.
Cao
,
L.
Ni
,
Z.
Wang
,
J.
Liu
,
Y.
Tian
,
Y.
Zhang
,
X.
Wei
,
T.
Guo
,
J.
Fan
, and
L.
Duan
, “
DFT investigation on direct Z-scheme photocatalyst for overall water splitting: MoTe2/BAs van der Waals heterostructure
,”
Appl. Surf. Sci.
551
,
149364
(
2021
).
You do not currently have access to this content.