Plasma structure and electron cross field in the zθ plane of a Hall thruster E×B plasma under an azimuthally inhomogeneous magnetic field are studied by both experimental and numerical approaches. The work is intended to identify a primary role of electron dynamics on the structure formation by manipulating only the strongly magnetized electrons. The plasma potential distribution shows an axial–azimuthal variation; a low magnetic field region results in spatial potential saturation further downstream. The plasma density structure shows a 1D-like azimuthal variation with less axial deformation. A dense region is observed near the location of B>0, where electrons are expected to undergo the B and curvature drift toward the anode where neutrals are introduced. The potential structure is in close correlation to the Hall parameter distribution, indicating that electron dynamics plays a primary role in plasma structure formation, and via multiple consecutive stepwise physical steps, it eventually affects the density structure formation. In the zθ space, the cross-field transport by E×B and diamagnetic drifts dominantly determines the electron flow and increases the overall axial electron mobility due to the azimuthal inhomogeneity. It is shown that most of the current is carried by the largest structure, but as the macroscopic structure fades out downstream, small structures grow and share the current. By considering the conservation laws, we show that a relation between azimuthal distributions of physical properties is formed to conserve the axial flux by a balance of specific forces, a balance between the resistive force and the magnetic force in the near-anode region and a balance between the electric/pressure force and the magnetic force in the acceleration and plume region, which differs from the Boltzmann relation satisfied in the radial dimension. Based on this principle, with a simplified test case having a uniform plasma density distribution, we show an analytic relation between azimuthal distributions of the magnetic field and the plasma potential and confirm the relation by a 2D hybrid simulation.

1.
D. M.
Goebel
and
I.
Katz
,
Fundamentals of Electric Propulsion: Ion and Hall Thrusters
(
JPL
,
Caltec
,
2008
).
2.
L.-Q.
Wei
,
L.
Han
,
D.-R.
Yu
, and
N.
Guo
, “
Low-frequency oscillations in Hall thrusters
,”
Chin. Phys. B
24
,
055201
(
2015
).
3.
J.-P.
Boeuf
, “
Tutorial: Physics and modeling of Hall thrusters
,”
J. Appl. Phys.
121
,
011101
(
2017
).
4.
K.
Hara
, “
An overview of discharge plasma modeling for Hall effect thrusters
,”
Plasma Sources Sci. Technol.
28
,
044001
(
2019
).
5.
I. D.
Kaganovich
,
A.
Smolyakov
,
Y.
Raitses
,
E.
Ahedo
,
I. G.
Mikellides
,
B.
Jorns
,
F.
Taccogna
,
R.
Gueroult
,
S.
Tsikata
,
A.
Bourdon
,
J.-P.
Boeuf
,
M.
Keidar
,
A. T.
Powis
,
M.
Merino
,
M.
Cappelli
,
K.
Hara
,
J. A.
Carlsson
,
N. J.
Fisch
,
P.
Chabert
,
I.
Schweigert
,
T.
Lafleur
,
K.
Matyash
,
A. V.
Khrabrov
,
R. W.
Boswell
, and
A.
Fruchtman
, “
Physics of E × B discharges relevant to plasma propulsion and similar technologies
,”
Phys. Plasmas
27
,
120601
(
2020
).
6.
Q.
Quraishi
,
S.
Robertson
, and
B.
Walch
, “
Electron diffusion in the annular Penning trap
,”
Phys. Plasmas
9
,
3264
3271
(
2002
).
7.
M.
Keidar
and
I.
Beilis
, “
Electron transport phenomena in plasma devices with E × B drift
,”
IEEE Trans. Plasma Sci.
34
,
804
814
(
2006
).
8.
N.
Brenning
,
D.
Lundin
,
T.
Minea
,
C.
Costin
, and
C.
Vitelaru
, “
Spokes and charged particle transport in HiPIMS magnetrons
,”
J. Phys. D: Appl. Phys.
46
,
084005
(
2013
).
9.
A.
Anders
and
Y.
Yang
, “
Plasma studies of a linear magnetron operating in the range from DC to HiPIMS
,”
J. Appl. Phys.
123
,
043302
(
2018
).
10.
T.
Lafleur
,
S. D.
Baalrud
, and
P.
Chabert
, “
Characteristics and transport effects of the electron drift instability in Hall-effect thrusters
,”
Plasma Sources Sci. Technol.
26
,
024008
(
2017
).
11.
C. L.
Ellison
,
Y.
Raitses
, and
N. J.
Fisch
, “
Cross-field electron transport induced by a rotating spoke in a cylindrical Hall thruster
,”
Phys. Plasmas
19
,
013503
(
2012
).
12.
S.
Janhunen
,
A.
Smolyakov
,
O.
Chapurin
,
D.
Sydorenko
,
I.
Kaganovich
, and
Y.
Raitses
, “
Nonlinear structures and anomalous transport in partially magnetized E × B plasmas
,”
Phys. Plasmas
25
,
011608
(
2018
).
13.
J. P.
Boeuf
and
L.
Garrigues
, “
E × B electron drift instability in Hall thrusters: Particle-in-cell simulations vs theory
,”
Phys. Plasmas
25
,
061204
(
2018
).
14.
R. R.
Hofer
, Ph.D. thesis (University of Michigan, 2004).
15.
Y.
Fukushima
,
S.
Yokota
,
D.
Takahashi
,
K.
Hara
,
S.
Cho
,
K.
Komurasaki
, and
Y.
Arakawa
, “Discharge stabilization method of an anode layer type Hall thruster by non-uniform propellant flow,” in 31st International Electric Propulsion Conference (Electric Rocket Propulsion Society, 2009), pp. IEPC-2009-148.
16.
J.
Bak
,
R.
Kawashima
,
K.
Komurasaki
, and
H.
Koizumi
, “
Plasma formation and cross-field electron transport induced by azimuthal neutral inhomogeneity in an anode layer Hall thruster
,”
Phys. Plasmas
26
,
073505
(
2019
).
17.
J.
Bak
,
B.
Van Loo
,
R.
Kawashima
, and
K.
Komurasaki
, “
Discharge characteristics and increased electron current during azimuthally nonuniform propellant supply in an anode layer Hall thruster
,”
J. Appl. Phys.
128
,
023302
(
2020
).
18.
M.
Ding
,
H.
Li
,
Y.
Ding
,
H.
Liu
,
D.
Yu
, and
X.
Wang
, “
Experimental study of the effect of propellant asymmetrical distribution on anode current in a Hall effect thruster
,”
Phys. Lett. A
383
,
3108
3113
(
2019
).
19.
J.
Bak
,
R.
Kawashima
,
J.
Simmonds
, and
K.
Komurasaki
, “
Evolution of electron cross-field transport induced by an equilibrium azimuthal electric field in an E×B Hall thruster discharge under an azimuthally inhomogeneous neutral supply
,”
Phys. Plasmas
28
,
102510
(
2021
).
20.
M.
Ding
,
H.
Li
,
Y.
Ding
,
L.
Wei
,
W.
Mao
,
L.
Han
, and
D.
Yu
, “
Effect of disruption of anode potential symmetrical supply on Hall thruster discharge
,”
Phys. Plasmas
28
,
033501
(
2021
).
21.
V.
Baranov
,
Y.
Nazarenko
, and
V.
Petrosov
, “Azimuthal non-uniformities in accelerators with closed electron drift,” in 27th International Electric Propulsion Conference (Electric Rocket Propulsion Society, 2001), pp. IEPC-01-18.
22.
A. V.
Kozyrev
,
N. S.
Sochugov
,
K. V.
Oskomov
,
A. N.
Zakharov
, and
A. N.
Odivanova
, “
Optical studies of plasma inhomogeneities in a high-current pulsed magnetron discharge
,”
Plasma Phys. Rep.
37
,
621
627
(
2011
).
23.
B.
Reid
and
A.
Gallimore
, “Review of Hall thruster neutral flow dynamics,” in 30th International Electric Propulsion Conference (Electric Rocket Propulsion Society, 2007), pp. IEPC-2007-038.
24.
Y.
Raitses
,
M.
Keidar
,
D.
Staack
, and
N. J.
Fisch
, “
Effects of segmented electrode in Hall current plasma thrusters
,”
J. Appl. Phys.
92
,
4906
4911
(
2002
).
25.
D.
Staack
,
Y.
Raitses
, and
N. J.
Fisch
, “
Shielded electrostatic probe for nonperturbing plasma measurements in Hall thrusters
,”
Rev. Sci. Instrum.
75
,
393
399
(
2004
).
26.
J. A.
Linnell
and
A. D.
Gallimore
, “
Internal plasma potential measurements of a Hall thruster using xenon and krypton propellant
,”
Phys. Plasmas
13
,
093502
(
2006
).
27.
B.
Reid
and
A.
Gallimore
, “Plasma potential measurements in the discharge channel of a 6-kW Hall thruster,” in 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit (American Institute of Aeronautics and Astronautics, Reston, VA, 2008), pp. AIAA 2008-5185.
28.
Y.
Hamada
,
R.
Kawashima
,
J.
Bak
,
K.
Komurasaki
, and
H.
Koizumi
, “
Characterization of acceleration zone shifting in an anode-layer-type Hall thruster RAIJIN66
,”
Vacuum
186
,
110040
(
2021
).
29.
G. S.
Janes
and
R. S.
Lowder
, “
Anomalous electron diffusion and ion acceleration in a low-density plasma
,”
Phys. Fluids
9
,
1115
1123
(
1966
).
30.
Z. A.
Brown
and
B. A.
Jorns
, “
Spatial evolution of small wavelength fluctuations in a Hall thruster
,”
Phys. Plasmas
26
,
113504
(
2019
).
31.
A.
Shashkov
,
A.
Lovtsov
, and
D.
Tomilin
, “
Investigation into the ionization and acceleration regions shift in a Hall thruster channel
,”
Eur. Phys. J. D
73
,
173
(
2019
).
32.
F. F.
Chen
,
Introduction to Plasma Physics and Controlled Fusion
(
Springer US
,
Boston, MA
,
1984
).
33.
R.
Kawashima
and
K.
Komurasaki
, “
Two-dimensional hybrid model of gradient drift instability and enhanced electron transport in a Hall thruster
,”
Phys. Plasmas
28
,
063502
(
2021
).
34.
S. I.
Braginskii
, “
Transport processes in plasmas
,”
Rev. Plasma Phys.
1
,
205
(
1965
).
35.
O.
Chapurin
and
A.
Smolyakov
, “
On the electron drift velocity in plasma devices with E × B drift
,”
J. Appl. Phys.
119
,
243306
(
2016
).
36.
F. F.
Chen
, “
“Universal” overstability of a resistive, inhomogeneous plasma
,”
Phys. Fluids
8
,
1323
(
1965
).
37.
A. I.
Morozov
,
Y. V.
Esinchuk
,
G. N.
Tilinin
,
A. V.
Trofimov
,
Y. A.
Sharov
, and
G. Y.
Shchepkin
, “
Plasma accelerator with closed electron drift and extended acceleration zone
,”
Sov. Phys. Techn. Phys.
17
,
38
45
(
1972
).
38.
B. M.
Reid
, Ph.D. thesis (University of Michigan, 2009).
39.
W.
Huang
,
H.
Kamhawi
, and
D. A.
Herman
, “Evidence of counter-streaming ions near the inner pole of the HERMeS Hall thruster,” in AIAA Propulsion and Energy 2019 Forum (American Institute of Aeronautics and Astronautics, Reston, VA, 2019), pp. AIAA 2019-3897.
40.
W.
Huang
,
J. D.
Frieman
,
H.
Kamhawi
,
P. Y.
Peterson
,
R. R.
Hofer
,
N. A.
Branch
, and
H.
Dao
, “Ion velocity characterization of the 12.5-kW advanced electric propulsion system engineering Hall thruster,” in AIAA Propulsion and Energy 2021 Forum (American Institute of Aeronautics and Astronautics, Reston, VA, 2021), pp. AIAA 2021-3432.
41.
J. M.
Fife
,
M.
Martinez-sanchez
, and
J.
Szabo
, “A numerical study of low-frequency discharge oscillations in Hall thruster,” in 33rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit (AIAA, 1997), p. AIAA 97-3052.
42.
K.
Komurasaki
and
Y.
Arakawa
, “
Two-dimensional numerical model of plasma flow in a Hall thruster
,”
J. Propul. Power
11
,
1317
1323
(
1995
).
43.
R.
Kawashima
,
K.
Hara
, and
K.
Komurasaki
, “
Numerical analysis of azimuthal rotating spokes in a crossed-field discharge plasma
,”
Plasma Sources Sci. Technol.
27
,
035010
(
2018
).
44.
A. I.
Smolyakov
,
O.
Chapurin
,
W.
Frias
,
O.
Koshkarov
,
I.
Romadanov
,
T.
Tang
,
M.
Umansky
,
Y.
Raitses
,
I. D.
Kaganovich
, and
V. P.
Lakhin
, “
Fluid theory and simulations of instabilities, turbulent transport and coherent structures in partially-magnetized plasmas of E × B discharges
,”
Plasma Phys. Controlled Fusion
59
,
014041
(
2017
).
45.
W.
Frias
,
A. I.
Smolyakov
,
I. D.
Kaganovich
, and
Y.
Raitses
, “
Long wavelength gradient drift instability in Hall plasma devices. I. Fluid theory
,”
Phys. Plasmas
19
,
072112
(
2012
),
You do not currently have access to this content.