We demonstrate cascaded, mid-infrared light-emitting diodes with quantum dot based active regions. Cascading is achieved through highly reverse-biased AlInAsSb tunnel junctions that serve to connect the successive InGaSb quantum dot active regions. Temperature-dependent characterization of the output irradiance as a function of the current and voltage indicates that the cascade architecture has minimal leakage currents in contrast to earlier single-stage devices and provides carrier recycling with a concomitant increase in irradiance. The results show that cascaded architectures can be applied to quantum dot platforms and that the quantum efficiency of the active region limits the overall device efficiency.
REFERENCES
1.
A.
Krier
, V. V.
Sherstnev
, and H. H.
Gao
, “A novel LED module for the detection of H2S at 3.8 m
,” J. Phys. D: Appl. Phys.
33
, 1656
(2000
). 2.
D.
Jung
, S.
Bank
, M. L.
Lee
, and D.
Wasserman
, “Next-generation mid-infrared sources
,” J. Opt.
19
, 123001
(2017
). 3.
H. H.
Tseng
, K. Y.
Wu
, H.
Li
, V.
Mashanov
, H. H.
Cheng
, G.
Sun
, and R. A.
Soref
, “Mid-infrared electroluminescence from a Ge/GeSn/Ge double heterostructure p-i-n diode on a Si substrate
,” Appl. Phys. Lett.
102
, 182106
(2013
). 4.
X.
Zhang
, J.-X.
Shen
, and C. G.
Van De Walle
, “Anomalous Auger recombination in PbSe
,” Phys. Rev. Lett.
125
, 037401
(2020
). 5.
B. B.
Haidet
, L.
Nordin
, A. J.
Muhowski
, K. D.
Vallejo
, E. T.
Hughes
, J.
Meyer
, P. J.
Simmonds
, D.
Wasserman
, and K.
Mukherjee
, “Interface structure and luminescence properties of epitaxial PbSe films on InAs(111)A
,” J. Vac. Sci. Technol. A
39
, 023404
(2021
). 6.
C. H.
Grein
, P. M.
Young
, and H.
Ehrenreich
, “Minority carrier lifetimes in ideal InGaSb/InAs superlattices
,” Appl. Phys. Lett.
61
, 2905
(1992
). 7.
M. E.
Flatté
, C. H.
Grein
, H.
Ehrenreich
, R. H.
Miles
, and H.
Cruz
, “Theoretical performance limits of 2.1–4.1 m InAs/InGaSb, HgCdTe, and InGaAsSb lasers
,” J. Appl. Phys.
78
, 4552
(1995
). 8.
E. R.
Youngdale
, J. R.
Meyer
, C. A.
Hoffman
, F. J.
Bartoli
, C. H.
Grein
, P. M.
Young
, H.
Ehrenreich
, R. H.
Miles
, and D. H.
Chow
, “Auger lifetime enhancement in InAs–GaInSb superlattices
,” Appl. Phys. Lett.
64
, 3160
(1994
). 9.
J.
Faist
, F.
Capasso
, D. L.
Sivco
, C.
Sirtori
, A. L.
Hutchinson
, and A. Y.
Cho
, “Quantum cascade laser
,” Science
264
, 553
–556
(1994
). 10.
J. R.
Meyer
, I.
Vurgaftman
, R. Q.
Yang
, and L. R.
Ram-Mohan
, “Type-II and type-I interband cascade lasers
,” Electron. Lett.
32
, 45
–46
(1996
). 11.
J.
Abell
, C. S.
Kim
, W. W.
Bewley
, C. D.
Merritt
, C. L.
Canedy
, I.
Vurgaftman
, J. R.
Meyer
, and M.
Kim
, “Mid-infrared interband cascade light emitting devices with milliwatt output powers at room temperature
,” Appl. Phys. Lett.
104
, 261103
(2014
). 12.
M.
Ermolaev
, Y.
Lin
, L.
Shterengas
, T.
Hosoda
, G.
Kipshidze
, S.
Suchalkin
, and G.
Belenky
, “GaSb-based type-I quantum well 3–3.5 m cascade light emitting diodes
,” IEEE Photonics Technol. Lett.
30
, 869
–872
(2018
). 13.
E. J.
Koerperick
, J. T.
Olesberg
, T. F.
Boggess
, J. L.
Hicks
, L. S.
Wassink
, L. M.
Murray
, and J. P.
Prineas
, “InAs/GaSb cascaded active region superlattice light emitting diodes for operation at 3.8 m
,” Appl. Phys. Lett.
92
, 121106
(2008
). 14.
E. J.
Koerperick
, D. T.
Norton
, J. T.
Olesberg
, B. V.
Olson
, J. P.
Prineas
, and T. F.
Boggess
, “Cascaded superlattice InAs/GaSb light-emitting diodes for operation in the long-wave infrared
,” IEEE J. Quantum Electron.
47
, 50
–54
(2011
). 15.
A. Y.
Liu
, C.
Zhang
, J.
Norman
, A.
Snyder
, D.
Lubyshev
, J. M.
Fastenau
, A. W.
Liu
, A. C.
Gossard
, and J. E.
Bowers
, “High performance continuous wave 1.3 m quantum dot lasers on silicon
,” Appl. Phys. Lett.
104
, 041104
(2014
). 16.
S.
Chen
, W.
Li
, J.
Wu
, Q.
Jiang
, M.
Tang
, S.
Shutts
, S. N.
Elliott
, A.
Sobiesierski
, A. J.
Seeds
, I.
Ross
, P. M.
Smowton
, and H.
Liu
, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon
,” Nat. Photonics
10
, 307
–311
(2016
). 17.
S.
Franchi
, G.
Trevisi
, L.
Seravalli
, and P.
Frigeri
, “Quantum dot nanostructures and molecular beam epitaxy
,” Prog. Cryst. Growth Charact. Mater.
47
, 166
–195
(2003
). 18.
D.
Wasserman
and S. A.
Lyon
, “Midinfrared luminescence from InAs quantum dots in unipolar devices
,” Appl. Phys. Lett.
81
, 2848
–2850
(2002
). 19.
K. W.
Berryman
, S. A.
Lyon
, and M.
Segev
, “Mid-infrared photoconductivity in InAs quantum dots
,” Appl. Phys. Lett.
70
, 1861
–1863
(1997
). 20.
D.
Pan
, E.
Towe
, and S.
Kennerly
, “A five-period normal-incidence (In, Ga)As/GaAs quantum-dot infrared photodetector
,” Appl. Phys. Lett.
75
, 2719
–2721
(1999
). 21.
A. V.
Barve
and S.
Krishna
, “Photovoltaic quantum dot quantum cascade infrared photodetector
,” Appl. Phys. Lett.
100
, 021105
(2012
). 22.
Z.
Shen
, Z.
Deng
, X.
Zhao
, J.
Huang
, C.
Cao
, X.
Zou
, F.
Liu
, Q.
Gong
, and B.
Chen
, “Submonolayer quantum dot quantum cascade long-wave infrared photodetector grown on Ge substrate
,” Appl. Phys. Lett.
118
, 081102
(2021
). 23.
S. V.
Ivanov
, A. N.
Semenov
, V. A.
Solov’ev
, O. G.
Lyublinskaya
, Y. V.
Terent’ev
, B. Y.
Meltser
, L. G.
Prokopova
, A. A.
Sitnikova
, A. A.
Usikova
, A. A.
Toropov
, and P. S.
Kop’ev
, “Molecular beam epitaxy of type II InSb/InAs nanostructures with InSb sub-monolayers
,” J. Cryst. Growth
278
, 72
–77
(2005
). 24.
K. D.
Moiseev
, Y. A.
Parkhomenko
, A. V.
Ankudinov
, E. V.
Gushchina
, M. P.
Mikha
, A. N.
Titkov
, and Y. P.
Yakovlev
, “InSb/InAs quantum dots grown by liquid phase epitaxy
,” Tech. Phys. Lett.
33
, 295
–298
(2007
). 25.
S.
Shusterman
, Y.
Paltiel
, A.
Sher
, V.
Ezersky
, and Y.
Rosenwaks
, “High-density nanometer-scale InSb dots formation using droplets heteroepitaxial growth by MOVPE
,” J. Cryst. Growth
291
, 363
–369
(2006
). 26.
Q.
Zhuang
, P. J.
Carrington
, and A.
Krier
, “Growth optimization of self-organized InSb/InAs quantum dots
,” J. Phys. D: Appl. Phys.
41
, 232003
(2008
). 27.
F.
Hatami
, S. M.
Kim
, H. B.
Yuen
, J. S.
Harris
, F.
Hatami
, S. M.
Kim
, H. B.
Yuen
, and J. S.
Harris
, “InSb and InSb:N multiple quantum dots
,” Appl. Phys. Lett.
89
, 133115
(2006
). 28.
R.
Liu
, Y.
Zhong
, L.
Yu
, H.
Kim
, S.
Law
, J.-M.
Zuo
, and D.
Wasserman
, “Mid-infrared emission from In(Ga)Sb layers on InAs(Sb)
,” Opt. Express
22
, 24466
(2014
). 29.
T.
Zabel
, C.
Reuterskiöld Hedlund
, O.
Gustafsson
, A.
Karim
, J.
Berggren
, Q.
Wang
, C.
Ernerheim-Jokumsen
, M.
Soldemo
, J.
Weissenrieder
, M.
Götelid
, and M.
Hammar
, “Auger recombination in In(Ga)Sb/InAs quantum dots
,” Appl. Phys. Lett.
106
, 013103
(2015
). 30.
A. F.
Briggs
, L. J.
Nordin
, A. J.
Muhowski
, P.
Petluru
, D.
Silva
, D.
Wasserman
, and S. R.
Bank
, “Mid-infrared electroluminescence from type-II In(Ga)Sb quantum dots
,” Appl. Phys. Lett.
116
, 061103
(2020
). 31.
P. J.
Carrington
, V. A.
Solov’ev
, Q.
Zhuang
, A.
Krier
, and S. V.
Ivanov
, “Room temperature midinfrared electroluminescence from InSb/InAs quantum dot light emitting diodes
,” Appl. Phys. Lett.
93
, 091101
(2008
). 32.
R. J.
Ricker
, S. R.
Provence
, D. T.
Norton
, T. F.
Boggess
, and J. P.
Prineas
, “Broadband mid-infrared superlattice light-emitting diodes
,” J. Appl. Phys.
121
, 185701
(2017
). 33.
E. J.
Koerperick
, J. T.
Olesberg
, J. L.
Hicks
, J. P.
Prineas
, and T. F.
Boggess
, “Active region cascading for improved performance in InAs–GaSb superlattice LEDs
,” IEEE J. Quantum Electron.
44
, 1242
–1247
(2008
). 34.
P.
Blood
, H.
Pask
, H. D.
Summers
, and I.
Sandall
, “Localized Auger recombination in quantum-dot lasers
,” IEEE J. Quantum Electron.
43
, 1140
–1146
(2007
). 35.
D. A.
Montealegre
, K. N.
Schrock
, A. C.
Walhof
, A. M.
Muellerleile
, and J. P.
Prineas
, “High-power mid-wave infrared LED using W-superlattices and textured surfaces
,” Appl. Phys. Lett.
118
, 071105
(2021
). © 2022 Author(s). Published under an exclusive license by AIP Publishing.
2022
Author(s)
You do not currently have access to this content.