The focusing performance of optical beams has always played an important role in various applications such as imaging, displaying, and sensing. In contrast to a traditional focused beam with gradually increasing light intensity, an auto-focusing Airy beam exhibits an abrupt way of focusing light energy. However, owning to the chromatic dispersion of light, the previously demonstrated auto-focusing Airy beam always suffers from chromatic aberration. Here, we show that with judicious dispersion engineering of its constituent nanostructures, a metasurface can generate auto-focusing Airy beam without chromatism for the visible light. In experimental demonstration, we implement a dielectric metasurface composed of TiO2 nanopillars that generates an achromatic auto-focusing Airy beam with diffraction-limited performance covering the wavelength range from 450 to 600 nm. This study paves the way toward efficient achromatic auto-focusing Airy beam generation based on flat optical components, enabling diverse potential applications including biomedical imaging, light-sheet microscopy, and particle manipulation.

1.
M. V.
Berry
and
N. L.
Balazs
, “
Non-spreading wave packets
,”
Am. J. Phys.
47
,
264
267
(
1979
).
2.
G. A.
Siviloglou
,
J.
Broky
,
A.
Dogariu
, and
D. N.
Christodoulides
, “
Observation of accelerating Airy beams
,”
Phys. Rev. Lett.
99
,
213901
(
2007
).
3.
G. A.
Siviloglou
and
D. N.
Christodoulides
, “
Accelerating finite energy Airy beams
,”
Opt. Lett.
32
,
979
981
(
2007
).
4.
G. A.
Siviloglou
,
J.
Broky
,
A.
Dogariu
, and
D. N.
Christodoulides
, “
Ballistic dynamics of Airy beams
,”
Opt. Lett.
33
,
207
209
(
2008
).
5.
J.
Broky
,
G. A.
Siviloglou
,
A.
Dogariu
, and
D. N.
Christodoulides
, “
Self-healing properties of optical Airy beams
,”
Opt. Express
16
,
12880
12891
(
2008
).
6.
P.
Polynkin
,
M.
Kolesik
,
J. V.
Moloney
,
G. A.
Siviloglou
, and
D. N.
Christodoulides
, “
Curved plasma channel generation using ultraintense Airy beams
,”
Science
324
,
229
232
(
2009
).
7.
E.
Greenfield
,
M.
Segev
,
W.
Walasik
, and
O.
Raz
, “
Accelerating light beams along arbitrary convex trajectories
,”
Phys. Rev. Lett.
106
,
213902
(
2011
).
8.
K.
Dholakia
and
T.
Cizmar
, “
Shaping the future of manipulation
,”
Nat. Photonics
5
,
335
342
(
2011
).
9.
T.
Vettenburg
,
H. I. C.
Dalgarno
,
J.
Nylk
,
C.
Coll-Llado
,
D. E. K.
Ferrier
,
T.
Cizmar
,
F. J.
Gunn-Moore
, and
K.
Dholakia
, “
Light-sheet microscopy using an Airy beam
,”
Nat. Methods
11
,
541
544
(
2014
).
10.
B.
Wei
,
P.
Chen
,
W.
Hu
,
W.
Ji
,
L.
Zheng
,
S.
Ge
,
Y.
Ming
,
V.
Chigrinov
, and
Y.
Lu
, “
Polarization-controllable Airy beams generated via a photoaligned director-variant liquid crystal mask
,”
Sci. Rep.
5
,
17484
(
2015
).
11.
M.
Henstridge
,
C.
Pfeiffer
,
D.
Wang
,
A.
Boltasseva
,
V. M.
Shalaev
,
A.
Grbic
, and
R.
Merlin
, “
Accelerating light with metasurfaces
,”
Optica
5
,
678
681
(
2018
).
12.
H.
Wang
,
J.
Du
,
H.
Wang
,
Y.
Lu
, and
P.
Wang
, “
Generation of spin-dependent accelerating beam with geometric metasurface
,”
Adv. Opt. Mater.
7
,
1900552
(
2019
).
13.
Q.
Fan
,
W.
Zhu
,
Y.
Liang
,
P.
Huo
,
C.
Zhang
,
A.
Agrawal
,
K.
Huang
,
X.
Luo
,
Y.
Lu
,
C.
Qiu
,
H. J.
Lezec
, and T. Xu, “
Broadband generation of photonic spin-controlled arbitrary accelerating light beams in the visible,”
Nano. Lett.
19
,
1158
1165
(
2019
).
14.
Q.
Cheng
,
J.
Wang
,
L.
Ma
,
Z.
Shen
,
J.
Zhang
,
X.
Zheng
,
T.
Chen
,
Y.
Yu
,
D.
Yu
,
Q.
He
,
W.
Hu
,
T.
Li
,
S.
Zhuang
, and
L.
Zhou
, “
Achromatic terahertz Airy beam generation with dielectric metasurfaces
,”
Nanophotonics
10
,
1123
1131
(
2021
).
15.
N.
Voloch-Bloch
,
Y.
Lereah
,
Y.
Lilach
,
A.
Gover
, and
A.
Arie
, “
Generation of electron Airy beams
,”
Nature
494
,
331
335
(
2013
).
16.
P.
Zhang
,
T.
Li
,
J.
Zhu
,
X.
Zhu
,
S.
Yang
,
Y.
Wang
,
X.
Yin
, and
X.
Zhang
, “
Generation of acoustic self-bending and bottle beams by phase engineering
,”
Nat. Commun.
5
,
4316
(
2014
).
17.
A.
Salandrino
and
D. N.
Christodoulides
, “
Airy plasmon: A nondiffracting surface wave
,”
Opt. Lett.
35
,
2082
2084
(
2010
).
18.
A.
Minovich
,
A. E.
Klein
,
N.
Janunts
,
T.
Pertsch
,
D. N.
Neshev
, and
Y. S.
Kivshar
, “
Generation and near-field imaging of Airy surface plasmons
,”
Phys. Rev. Lett.
107
,
116802
(
2011
).
19.
L.
Li
,
T.
Li
,
S.
Wang
,
C.
Zhang
, and
S.
Zhu
, “
Plasmonic Airy beam generated by in-plane diffraction
,”
Phys. Rev. Lett.
107
,
126804
(
2011
).
20.
N. K.
Efremidis
and
D. N.
Christodoulides
, “
Abruptly autofocusing waves
,”
Opt. Lett.
35
,
4045
4047
(
2010
).
21.
D. G.
Papazoglou
,
N. K.
Efremidis
,
D. N.
Christodoulides
, and
S.
Tzortzakis
, “
Observation of abruptly autofocusing waves
,”
Opt. Lett.
36
,
1842
1844
(
2011
).
22.
N. K.
Efremidis
,
Z.
Chen
,
M.
Segev
, and
D. N.
Christodoulides
, “
Airy beams and accelerating waves: An overview of recent advances
,”
Optica
6
,
686
701
(
2019
).
23.
P.
Zhang
,
J.
Prakash
,
Z.
Zhang
,
M. S.
Mills
,
N. K.
Efremidis
,
D. N.
Christodoulides
, and
Z.
Chen
, “
Trapping and guiding microparticles with morphing autofocusing Airy beams
,”
Opt. Lett.
36
,
2883
2885
(
2011
).
24.
Z.
Zheng
,
B.
Zhang
,
H.
Chen
,
J.
Ding
, and
H.
Wang
, “
Optical trapping with focused Airy beams
,”
Appl. Optics
50
,
43
49
(
2011
).
25.
P.
Panagiotopoulos
,
D. G.
Papazoglou
,
A.
Couairon
, and
S.
Tzortzakis
, “
Sharply autofocused ring-Airy beams transforming into non-linear intense light bullets
,”
Nat. Commun.
4
,
2622
(
2013
).
26.
I.
Chremmos
,
P.
Zhang
,
J.
Prakash
,
N. K.
Efremidis
,
D. N.
Christodoulides
, and
Z.
Chen
, “
Fourier-space generation of abruptly autofocusing beams and optical bottle beams
,”
Opt. Lett.
36
,
3675
3677
(
2011
).
27.
D.
Lin
,
P.
Fan
,
E.
Hasman
, and
M. L.
Brongersma
, “
Dielectric gradient metasurface optical elements
,”
Science
345
,
298
302
(
2014
).
28.
N.
Yu
and
F.
Capasso
, “
Flat optics with designer metasurfaces
,”
Nat. Mater.
13
,
139
150
(
2014
).
29.
A.
Arbabi
,
Y.
Horie
,
M.
Bagheri
, and
A.
Faraon
, “
Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission
,”
Nat. Nanotechnol.
10
,
937
943
(
2015
).
30.
L.
Huang
,
H.
Muhlenbernd
,
X.
Li
,
X.
Song
,
B.
Bai
,
Y.
Wang
, and
T.
Zentgraf
, “
Broadband hybrid holographic multiplexing with geometric metasurfaces
,”
Adv. Mater.
27
,
6444
6449
(
2015
).
31.
X.
Luo
, “
Principles of electromagnetic waves in metasurfaces
,”
Sci. China. Phys. Mech. Astron.
58
,
594201
(
2015
).
32.
L.
Zhang
,
S.
Mei
,
K.
Huang
, and
C.
Qiu
, “
Advances in full control of electromagnetic waves with metasurfaces
,”
Adv. Opt. Mater.
4
,
818
833
(
2016
).
33.
Y.
Guo
,
M.
Pu
,
Z.
Zhao
,
Y.
Wang
,
J.
Jin
,
P.
Gao
,
X.
Li
,
X.
Ma
, and
X.
Luo
, “
Merging geometric phase and plasmon retardation phase in continuously shaped metasurfaces for arbitrary orbital angular momentum generation
,”
ACS Photonics
3
,
2022
2029
(
2016
).
34.
S.
Divitt
,
W.
Zhu
,
C.
Zhang
,
H. J.
Lezec
, and
A.
Agrawal
, “
Ultrafast optical pulse shaping using dielectric metasurfaces
,”
Science
364
,
890
894
(
2019
).
35.
P.
Huo
,
S.
Zhang
,
Y.
Liang
,
Y.
Lu
, and
T.
Xu
, “
Hyperbolic metamaterials and metasurfaces fundamentals and applications
,”
Adv. Opt. Mater.
7
,
1801616
(
2019
).
36.
A. M.
Shaltout
,
K. G.
Lagoudakis
,
J.
van de Groep
,
S. J.
Kim
,
J.
Vuckovic
,
V. M.
Shalaev
, and
M. L.
Brongersma
, “
Spatiotemporal light control with frequency-gradient metasurfaces
,”
Science
365
,
374
377
(
2019
).
37.
K.
Dou
,
X.
Xie
,
M.
Pu
,
X.
Li
,
X.
Ma
,
C.
Wang
, and
X.
Luo
, “
Off-axis multi-wavelength dispersion controlling metalens for multi-color imaging
,”
OptoElectron. Adv.
3
,
190005
(
2020
).
38.
Y.
Zhang
,
H.
Liu
,
H.
Cheng
,
J.
Tian
, and
S.
Chen
, “
Multidimensional manipulation of wave fields based on artificial microstructures
,”
OptoElectron. Adv.
3
,
200002
(
2020
).
39.
Y.
Wang
,
Q.
Fan
, and
T.
Xu
, “
Design of high efficiency achromatic metalens with large operation bandwidth using bilayer architecture
,”
OptoElectron. Adv.
4
,
200008
(
2021
).
40.
X.
Xie
,
M.
Pu
,
J.
Jin
,
M.
Xu
,
Y.
Guo
,
X.
Li
,
P.
Gao
,
X.
Ma
, and
X.
Luo
, “
Generalized Pancharatnam-Berry phase in rotationally symmetric meta-atoms
,”
Phys. Rev. Lett.
126
,
183902
(
2021
).
41.
Q.
Fan
,
D.
Wang
,
P.
Huo
,
Z.
Zhang
,
Y.
Liang
, and
T.
Xu
, “
Autofocusing Airy beams generated by all-dielectric metasurface for visible light
,”
Opt. Express
25
,
9285
9294
(
2017
).
42.
H.
Li
,
W.
Hao
,
X.
Yin
,
S.
Chen
, and
L.
Chen
, “
Broadband generation of Airy beams with hyperbolic metamaterials
,”
Adv. Opt. Mater.
7
,
1900493
(
2019
).
43.
C.
Zhang
,
S.
Divitt
,
Q.
Fan
,
W.
Zhu
,
A.
Agrawal
,
Y.
Lu
,
T.
Xu
, and
H. J.
Lezec
, “
Low-loss metasurface optics down to the deep ultraviolet region
,”
Light Sci. Appl.
9
,
55
(
2020
).
44.
M.
Goutsoulas
and
N. K.
Efremidis
, “
Precise amplitude, trajectory, and beam-width control of accelerating and abruptly autofocusing beams
,”
Phys. Rev. A
97
,
063831
(
2018
).
45.
F.
Aieta
,
M. A.
Kats
,
P.
Genevet
, and
F.
Capasso
, “
Multiwavelength achromatic metasurfaces by dispersive phase compensation
,”
Science
347
,
1342
1345
(
2015
).
46.
S.
Wang
,
P.
Wu
,
V.
Su
,
Y.
Lai
,
C.
Hung Chu
,
J.
Chen
,
S.
Lu
,
J.
Chen
,
B.
Xu
,
C.
Kuan
,
T.
Li
,
S.
Zhu
, and
D.
Tsai
, “
Broadband achromatic optical metasurface devices
,”
Nat. Commun.
8
,
187
(
2017
).
47.
S.
Wang
,
P.
Wu
,
V.
Su
,
Y.
Lai
,
M.
Chen
,
H.
Kuo
,
B.
Chen
,
Y.
Chen
,
T.
Huang
,
J.
Wang
,
R.
Lin
,
C.
Kuan
,
T.
Li
,
Z.
Wang
,
S.
Zhu
, and
D.
Tsai
, “
A broadband achromatic metalens in the visible
,”
Nat. Nanotechnol.
13
,
227
232
(
2018
).
You do not currently have access to this content.