Degradation of InGaN–GaN LEDs has been the subject of intense investigations in the past few years. While current- and temperature-induced degradation processes have been described, the impact of photon-induced degradation has not been investigated in detail in the literature. This paper aims at improving the understanding of the mechanisms responsible for the degradation of the InGaN subject to high photon densities by stressing the devices under a high-intensity laser beam in open-circuit conditions (i.e., in the absence of external current). We analyzed the degradation by means of electrical, optical, and deep-level characterization techniques. First, we demonstrate the existence of optically induced degradation processes in GaN LEDs: from photoluminescence measurements, we observed a decrease in the luminescence after stress, more prominent in the region irradiated during stress. Second, we ascribe this effect to a decrease in internal quantum efficiency due to the generation of non-radiative defects within the active region. Third, by steady-state photocapacitance measurements, we reveal the presence of a shallow level with an energy of EC–2.2 eV, which can be ascribed to gallium vacancies and its complexes with oxygen and nitrogen and can be related to the increase in yellow luminescence.

1.
M.-H.
Chang
,
D.
Das
,
P. V.
Varde
, and
M.
Pecht
, “
Light emitting diodes reliability review
,”
Microelectron. Reliab.
52
,
762
782
(
2012
).
2.
L. X.
Zhao
,
E. J.
Thrush
,
C. J.
Humphreys
, and
W. A.
Phillips
, “
Degradation of GaN-based quantum well light-emitting diodes
,”
J. Appl. Phys.
103
,
024501
(
2008
).
3.
L.
Liu
,
M.
Ling
,
J.
Yang
,
W.
Xiong
,
W.
Jia
, and
G.
Wang
, “
Efficiency degradation behaviors of current/thermal co-stressed GaN-based blue light emitting diodes with vertical-structure
,”
J. Appl. Phys.
111
,
093110
(
2012
).
4.
M.
Meneghini
,
L.-R.
Trevisanello
,
U.
Zehnder
,
G.
Meneghesso
, and
E.
Zanoni
, “
Reversible degradation of ohmic contacts on p-GaN for application in high-brightness LEDs
,”
IEEE Trans. Electron Devices
54
,
3245
3251
(
2007
).
5.
D.
Cherns
,
S. J.
Henley
, and
F. A.
Ponce
, “
Edge and screw dislocations as nonradiative centers in InGaN/GaN quantum well luminescence
,”
Appl. Phys. Lett.
78
,
2691
2693
(
2001
).
6.
Q.
Dai
,
M. F.
Schubert
,
M. H.
Kim
,
J. K.
Kim
,
E. F.
Schubert
,
D. D.
Koleske
,
M. H.
Crawford
,
S. R.
Lee
,
A. J.
Fischer
,
G.
Thaler
, and
M. A.
Banas
, “
Internal quantum efficiency and nonradiative recombination coefficient of GaInN/GaN multiple quantum wells with different dislocation densities
,”
Appl. Phys. Lett.
94
,
111109
(
2009
).
7.
N.
Renso
,
M.
Meneghini
,
M.
Buffolo
,
C.
De Santi
,
G.
Meneghesso
, and
E.
Zanoni
, “
Understanding the degradation processes of GaN based LEDs submitted to extremely high current density
,”
Microelectron. Reliab.
76–77
,
556
560
(
2017
).
8.
P.
Tian
,
A.
Althumali
,
E.
Gu
,
I. M.
Watson
,
M. D.
Dawson
, and
R.
Liu
, “
Aging characteristics of blue InGaN micro-light emitting diodes at an extremely high current density of 3.5kA cm−2
,”
Semicond. Sci. Technol.
31
,
045005
(
2016
).
9.
M.
Meneghini
,
S.
Podda
,
A.
Morelli
,
R.
Pintus
,
L.
Trevisanello
,
G.
Meneghesso
,
M.
Vanzi
, and
E.
Zanoni
, “
High brightness GaN LEDs degradation during dc and pulsed stress
,”
Microelectron. Reliab.
46
,
1720
1724
(
2006
).
10.
M.
Dal Lago
,
M.
Meneghini
,
N.
Trivellin
,
G.
Mura
,
M.
Vanzi
,
G.
Meneghesso
, and
E.
Zanoni
, “
Phosphors for LED-based light sources: Thermal properties and reliability issues
,”
Microelectron. Reliab.
52
,
2164
2167
(
2012
).
11.
M.
Meneghini
,
M.
Dal Lago
,
N.
Trivellin
,
G.
Mura
,
M.
Vanzi
,
G.
Meneghesso
, and
E.
Zanoni
, “
Chip and package-related degradation of high power white LEDs
,”
Microelectron. Reliab.
52
,
804
812
(
2012
).
12.
C. G.
Van de Walle
, “
Interactions of hydrogen with native defects in GaN
,”
Phys. Rev. B
56
,
R10020
R10023
(
1997
).
13.
OSRAM OSTAR® LE B P3MQ datasheet.
14.
M.
Auf der Maur
,
B.
Galler
,
I.
Pietzonka
,
M.
Strassburg
,
H.
Lugauer
, and
A.
Di Carlo
, “
Trap-assisted tunneling in InGaN/GaN single-quantum-well light-emitting diodes
,”
Appl. Phys. Lett.
105
,
133504
(
2014
).
15.
M.
Mandurrino
,
G.
Verzellesi
,
M.
Goano
,
M.
Vallone
,
F.
Bertazzi
,
G.
Ghione
,
M.
Meneghini
,
G.
Meneghesso
, and
E.
Zanoni
, “
Physics-based modeling and experimental implications of trap-assisted tunneling in InGaN/GaN light-emitting diodes
,”
Phys. Status Solidi A
212
,
947
953
(
2015
).
16.
N.
Roccato
,
F.
Piva
,
C.
De Santi
,
R.
Brescancin
,
K.
Mukherjee
,
M.
Buffolo
,
C.
Haller
,
J.-F.
Carlin
,
N.
Grandjean
,
M.
Vallone
,
A.
Tibaldi
,
F.
Bertazzi
,
M.
Goano
,
G.
Verzellesi
,
G.
Meneghesso
,
E.
Zanoni
, and
M.
Meneghini
, “
Modeling the electrical characteristics of InGaN/GaN LED structures based on experimentally-measured defect characteristics,
J. Phys. D. Appl. Phys.
54, 425105 (2021).
17.
A.
Armstrong
,
T. A.
Henry
,
D. D.
Koleske
,
M. H.
Crawford
,
K. R.
Westlake
, and
S. R.
Lee
, “
Dependence of radiative efficiency and deep level defect incorporation on threading dislocation density for InGaN/GaN light emitting diodes
,”
Appl. Phys. Lett.
101
,
162102
(
2012
).
18.
P.
Kamyczek
,
E.
Placzek-Popko
,
V.
Kolkovsky
,
S.
Grzanka
, and
R.
Czernecki
, “
A deep acceptor defect responsible for the yellow luminescence in GaN and AlGaN
,”
J. Appl. Phys.
111
,
113105
(
2012
).
19.
J. L.
Lyons
,
A.
Janotti
, and
C. G.
Van de Walle
, “
Effects of carbon on the electrical and optical properties of InN, GaN, and AlN
,”
Phys. Rev. B
89
,
035204
(
2014
).
20.
J. L.
Lyons
,
A.
Janotti
, and
C. G.
Van De Walle
, “
Carbon impurities and the yellow luminescence in GaN
,”
Appl. Phys. Lett.
97
,
152108
(
2010
).
21.
T.
Ogino
and
M.
Aoki
, “
Mechanism of yellow luminescence in GaN
,”
Jpn. J. Appl. Phys.
19
,
2395
2405
(
1980
).
22.
J.
Neugebauer
and
C. G.
Van de Walle
, “
Gallium vacancies and the yellow luminescence in GaN
,”
Appl. Phys. Lett.
69
,
503
505
(
1996
).
23.
A.
Sedhain
,
J.
Li
,
J. Y.
Lin
, and
H. X.
Jiang
, “
Nature of deep center emissions in GaN
,”
Appl. Phys. Lett.
96
,
151902
(
2010
).
24.
W.
Shockley
and
W. T.
Read
, “
Statistics of the recombinations of holes and electrons
,”
Phys. Rev.
87
,
835
842
(
1952
).
25.
A.
David
,
N. G.
Young
,
C. A.
Hurni
, and
M. D.
Craven
, “
Quantum efficiency of III-nitride emitters: Evidence for defect-assisted nonradiative recombination and its effect on the green gap
,”
Phys. Rev. Appl.
11
,
031001
(
2019
).
26.
C. E.
Dreyer
,
A.
Alkauskas
,
J. L.
Lyons
,
J. S.
Speck
, and
C. G.
Van De Walle
, “
Gallium vacancy complexes as a cause of Shockley-Read-Hall recombination in III-nitride light emitters
,”
Appl. Phys. Lett.
108
,
141101
(
2016
).
27.
S. F.
Chichibu
,
A.
Uedono
,
K.
Kojima
,
H.
Ikeda
,
K.
Fujito
,
S.
Takashima
,
M.
Edo
,
K.
Ueno
, and
S.
Ishibashi
, “
The origins and properties of intrinsic nonradiative recombination centers in wide bandgap GaN and AlGaN
,”
J. Appl. Phys.
123
,
161413
(
2018
).
You do not currently have access to this content.