In this study, the microwave absorbing properties of epoxy composites filled with micro-sized MoS2 and carbon nanotubes (CNT)/MoS2 were investigated in the frequency range of 1–67 GHz. Sample characterization was performed using electron microscopy and Raman spectroscopy methods. Direct current (DC) conductivity, complex permittivity, and shielding properties of composite materials with 50 wt. % of MoS2 and 1.5–2 wt. %CNT/50 wt.%MoS2 were measured. The permittivity of 50 wt. % MoS2/epoxy composite was found to be equal to 7.3, decreasing monotonically down to 4.5 at 67 GHz, while the imaginary part is equal to 1 and does not change. The addition of 2 wt. % of CNTs increases the real part of permittivity εr up to 30 at 1 GHz (13 at 67 GHz) and also leads to a large increase of the imaginary part of permittivity, with the most pronounced relaxation peak εr=10 at 10 GHz. Such an increase of dielectric loss correlates with the increase of DC conductivity up to 3.2 × 10−5 S/m as compared to the two-phase composite 50 wt. %MoS2/epoxy (σdc = 1.7 × 10−9 S/m). It was shown that 50 wt. %MoS2/epoxy composite exhibited an effective microwave absorption bandwidth of 9.9 GHz at the sample thickness of 2.0 mm with reflection loss minimum of -20.0 dB at 51.5 GHz. 2 wt. %CNT/50 wt. %MoS2/epoxy composite with a thickness of 0.9 mm showed a reflection loss minimum of −38 dB at 20.2 GHz with the absorption bandwidth of 3.68 GHz. The influence of sample thickness on position, width, and depth of EMR absorption maximums for the composites filled with MoS2 and mixed filler CNT/MoS2 was also determined.

1.
H.
Sun
,
R.
Che
,
X.
You
,
Y.
Jiang
,
Z.
Yang
,
J.
Deng
,
L.
Qiu
, and
H.
Peng
, “
Cross-stacking aligned carbon-nanotube films to tune microwave absorption frequencies and increase absorption intensities
,”
Adv. Mater.
26
(
48
),
8120
8125
(
2014
).
2.
X.
Hong
,
Q.
Wang
,
Z.
Tang
,
W. Q.
Khan
,
D.
Zhou
, and
T.
Feng
, “
Synthesis and electromagnetic absorbing properties of titanium carbonitride with quantificational carbon doping
,”
J. Phys. Chem. C
120
(
1
),
148
156
(
2016
).
3.
G.
Wang
,
Z.
Gao
,
G.
Wan
,
S.
Lin
,
P.
Yang
, and
Y.
Qin
, “
High densities of magnetic nanoparticles supported on graphene fabricated by atomic layer deposition and their use as efficient synergistic microwave absorbers
,”
Nano Res.
7
(
5
),
704
716
(
2014
).
4.
D.
Jiang
,
V.
Murugadoss
,
Y.
Wang
,
J.
Lin
,
T.
Ding
,
Z.
Wang
,
Q.
Shao
,
C.
Wang
,
H.
Liu
,
N.
Lu
,
R.
Wei
,
A.
Subramania
, and
Z.
Guo
, “
Electromagnetic interference shielding polymers and nanocomposites—A review
,”
Polym. Rev.
59
,
280
337
(
2019
).
5.
Y.
Sun
,
W.
Zhong
,
Y.
Wang
,
X.
Xu
,
T.
Wang
,
L.
Wu
, and
Y.
Du
, “
MoS2-based mixed-dimensional van der Waals heterostructures: A new platform for excellent and controllable microwave-absorption performance
,”
ACS Appl. Mater. Interfaces
9
(
39
),
34243
34255
(
2017
).
6.
Y.
Yang
,
M.
Li
,
Y. P.
Wu
,
B.
Zong
, and
J.
Ding
, “
Size-dependent microwave absorption properties of Fe3O4 nanodiscs
,”
RSC Adv.
6
,
25444
25448
(
2016
).
7.
J.
Zhao
,
Y.
Lu
,
W.
Ye
,
L.
Wang
,
B.
Liu
,
S.
Lv
,
L.
Chen
, and
J.
Gu
, “
Enhanced wave-absorbing performances of silicone rubber composites by incorporating C-SnO2-MWCNT absorbent with ternary heterostructure
,”
Ceram. Int.
45
,
20282
20289
(
2019
).
8.
L.
Wang
,
H.
Qiu
,
C.
Liang
,
P.
Song
,
Y.
Han
,
Y.
Han
,
J.
Gu
,
J.
Kong
,
D.
Pan
, and
Z.
Guo
, “
Electromagnetic interference shielding MWCNT-Fe3O4@Ag/epoxy nanocomposites with satisfactory thermal conductivity and high thermal stability
,”
Carbon
141
,
506
514
(
2019
).
9.
R.
Khan
,
Z. M.
Khan
,
H. B.
Aqeel
 et al, “
2D nanosheets and composites for EMI shielding analysis
,”
Sci. Rep.
10
,
21550
(
2020
).
10.
P. S.
Sreekala
,
H.
John
, and
C. K.
Aanandan
, “
Studies on anomalous dispersion behavior of PANI–CNT composites for enhanced shielding effectiveness in various microwave bands
,”
Appl. Phys. A
126
,
389
(
2020
).
11.
B.
Dassan
,
G.
Emayaruba
,
A. A.
Rahman
,
A.
Aslina
,
M. S.
Zainol
, and
H. M.
Akil
, “
Carbon nanotube–reinforced polymer composite for electromagnetic interference application: A review
,”
Nanotechnol. Rev.
9
(
1
),
768
788
(
2020
).
12.
T. N.
Kumar
,
L.
Mohan
, and
S.
Karakkad
, “
Carbon nanofiber based epoxy nano composites—An innovative material for electromagnetic shielding
,”
AIP Conf. Proc.
2105
,
020029
(
2019
).
13.
L.
Kong
,
X.
Yin
,
H.
Xu
,
X.
Yuan
,
T.
Wang
,
Z.
Xu
,
J.
Huang
,
R.
Yang
, and
H.
Fan
, “
Powerful absorbing and lightweight electromagnetic shielding CNTs/RGO composite
,”
Carbon
145
,
61
66
(
2019
).
14.
K.
Pan
,
T.
Leng
,
J.
Song
,
C.
Ji
,
J.
Zhang
,
J.
Li
,
K. S.
Novoselov
, and
Z.
Hu
, “
Controlled reduction of graphene oxide laminate and its applications for ultra-wideband microwave absorption
,”
Carbon
160
,
307
316
(
2020
).
15.
M.-Q.
Ning
,
M.-M.
Lu
,
J.-B.
Li
,
Z.
Chen
,
Y.-K.
Dou
,
C.-Z.
Wang
,
F.
Rehman
,
M.-S.
Cao
, and
H.-B.
Jin
, “
Two-dimensional nanosheets of MoS2: A promising material with high dielectric properties and microwave absorption performance
,”
Nanoscale
7
,
15734
(
2015
).
16.
F.
Qin
and
C.
Brosseau
, “
A review and analysis of microwave absorption in polymer composites filled with carbonaceous particles
,”
J. Appl. Phys.
111
(
6
),
061301
(
2012
).
17.
S. P.
Pawar
,
S.
Biswas
,
G. P.
Kar
, and
S.
Bose
, “
High frequency millimetre wave absorbers derived from polymeric nanocomposites
,”
Polymer
84
,
398
419
(
2016
).
18.
X.
Su
,
J.
Ning
,
Y.
Jia
, and
Y.
Liu
, “
Flower-like MoS2 nanospheres: A promising material with good microwave absorption property in the frequency range of 8.2–12.4 GHz
,”
Nano
13
(
7
),
1850084
(
2018
).
19.
R.
Zhang
,
Y.
Du
,
G.
Han
, and
X.
Gao
, “
Ferromagnetism and microwave absorption properties of Cr-doped MoS2 nanosheets
,”
J. Mater. Sci.
54
,
552
559
(
2019
).
20.
W.
Ding
,
L.
Hu
,
Q. C.
Liu
,
Z. G.
Sheng
,
J. M.
Dai
,
X. B.
Zhu
, and
Y. P.
Sun
, “
Structure modulation induced enhancement of microwave absorption in WS2 nanosheets
,”
Appl. Phys. Lett.
113
,
243102
(
2018
).
21.
X.
Liang
,
X.
Zhang
,
W.
Liu
,
D.
Tang
,
B.
Zhang
, and
G.
Ji
, “
A simple hydrothermal process to grow MoS2 nanosheets with excellent dielectric loss and microwave absorption performance
,”
J. Mater. Chem. C
4
,
6816
(
2016
).
22.
D.
Zhang
,
Y.
Jia
,
J.
Cheng
,
S.
Chen
,
J.
Chai
,
X.
Yang
,
Z.
Wu
,
H.
Wang
,
W.
Zhang
,
Z.
Zhao
,
C.
Han
,
M.
Cao
, and
G. P.
Zheng
, “
High-performance microwave absorption materials based on MoS2-graphene isomorphic hetero-structures
,”
J. Alloys Compd.
758
,
62
71
(
2018
).
23.
J.
Wang
,
X.
Lin
,
Z.
Chu
,
Z.
Huang
,
T.
Guo
,
L.
Yang
, and
S.
Li
, “
Magnetic MoS2: A promising microwave absorption material with both dielectric loss and magnetic loss properties
,”
Nanotechnology
31
,
135602
(
2020
).
24.
Y.
Sun
,
J.
Xu
,
W.
Qiao
,
X.
Xu
,
W.
Zhang
,
K.
Zhang
,
X.
Zhang
,
X.
Chen
,
W.
Zhong
, and
Y.
Du
, “
Constructing two-, zero-, and one-dimensional integrated nanostructures: An effective strategy for high microwave absorption performance
,”
ACS Appl. Mater. Interfaces
8
,
31878
31886
(
2016
).
25.
A.
Naumenko
,
L.
Kulikov
, and
N.
Konig
, “
Raman spectra of graphene-like nanoparticles of molybdenum and tungsten disulfides
,”
Ukr. J. Phys.
61
(
6
),
556
561
(
2016
).
26.
L. L.
Vovchenko
,
T. A.
Len
,
L. Y.
Matzui
,
O. V.
Turkov
, and
Y. S.
Perets
, “
Electrical and thermal conductivity of ternary composites graphite nanoplatelets/TiO2/epoxy
,”
J. Nano- Electron. Phys.
11
(
3
),
03007-
(
2019
).
27.
L.
Vovchenko
,
O.
Lozitsky
,
L.
Matzui
,
V.
Oliynyk
,
V.
Zagorodnii
, and
M.
Skoryk
, “
Electromagnetic shielding properties of epoxy composites with hybrid filler nanocarbon/BaTiO3
,”
Mater. Chem Phys.
240
,
122234
(
2020
).
28.
J.
Choma
, Jr.
,
Electrical Networks Theory and Analysis
(
Wiley-Interscience
,
New York
,
1985
), pp.
509
513
.
29.
F.
Costa
,
M.
Borgese
,
M.
Degiorgi
, and
A.
Monorchio
, “
Electromagnetic characterisation of materials by using transmission/reflection (T/R) devices
,”
Electronics
6
,
95
(
2017
).
30.
Z.
Wang
and
G. L.
Zhao
, “
Microwave absorption properties of carbon nanotubes-epoxy composites in a frequency range of 2–20 GHz
,”
Open J. Compos. Mater.
3
,
29716
(
2013
).
31.
X.
Zhang
,
X.-F.
Qiao
,
W.
Shi
,
J.-B.
Wu
,
D.-S.
Jiang
, and
P.-H.
Tan
, “
Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material
,”
Chem. Soc. Rev.
44
(
9
),
2757
2785
(
2015
), arXiv:1502.00701v1 [cond-mat.mtrl-sci].
32.
X.
Zhang
,
W. P.
Han
,
J. B.
Wu
,
S.
Milana
,
Y.
Lu
,
Q. Q.
Li
,
A. C.
Ferrari
, and
P. H.
Tan
, “
Raman spectroscopy of shear and layer breathing modes in multilayer MoS2
,”
Phys. Rev. B
87
,
115413
(
2013
).
33.
G. L.
Frey
,
R.
Tenne
,
M. J.
Matthews
,
M. S.
Dresselhaus
, and
G.
Dresselhaus
, “
Raman and resonance Raman investigation of MoS2 nanoparticles
,”
Phys. Rev. B
60
(
4
),
2883
(
1999
).
34.
H.
Li
,
Q.
Zhang
,
C. C. R.
Yap
,
B. K.
Tay
,
T. H. T.
Edwin
,
A.
Olivier
, and
D.
Baillargeat
, “
From bulk to monolayer MoS2: Evolution of Raman scattering
,”
Adv. Funct. Mater.
22
,
1385
1390
(
2012
).
35.
T.
Sekine
,
T.
Nakashizu
,
K.
Toyoda
,
K.
Uchinokura
, and
E.
Matsuura
, “
Raman scattering in layered compound 2H-WS2
,”
Solid State Comm.
35
,
371
373
(
1980
).
36.
C.
Lee
,
H.
Yan
,
L. E.
Brus
,
T. F.
Heinz
,
J.
Hone
, and
S.
Ryu
, “
Anomalous lattice vibrations of single- and few-layer MoS2
,”
ACS Nano
4
(
5
),
2695
2700
(
2010
).
37.
K.
Gołasa
,
M.
Grzeszczyk
,
R.
Boźek
,
P.
Leszczyński
,
A
Wysmołek
,
M.
Potemski
, and
A.
Babiński
, “
Resonant Raman scattering in MoS2—From bulk to monolayer
,”
Sol. St. Com.
197
,
53
56
(
2014
).
38.
L.
Yang
and
J.
Han
, “
Electronic structure of deformed carbon nanotubes
,”
Phys. Rev. Lett.
85
,
154
(
2000
).
39.
A.
Naumenko
,
V.
Yashchuk
,
V.
Bliznyuk
, and
S.
Singamaneni
, “
Peculiarities of Raman spectra of polyurethane/carbon nanotube composite
,”
Eur. Phys. J. B
85
,
120
(
2012
).
40.
L.
Bokobza
and
J.
Zhang
, “
Raman spectroscopic characterization of multiwall carbon nanotubes and of composites
,”
eXPRESS Polym. Lett.
6
(
7
),
601
608
(
2012
).
41.
L. M.
Kulikov
,
N. B.
Konig-Ettel
,
L. Y.
Matzui
,
A. P.
Naumenko
,
T. A.
Len
,
I. V.
Ovsiienko
, and
V. I.
Matzui
, “
Semiconducting and optical properties of compact graphene-like nanoparticles of molybdenum disulfide
,” in
Nanophysics, Nanomaterials, Interface Studies, and Applications, NANO 2016. Springer Proceedings in Physics
, edited by
O.
Fesenko
and
L.
Yatsenko
(
Springer
,
Cham
,
2017
), Vol.
195
, pp.
845
854
.
42.
N. F.
Mott
,
Metal–Insulator Transitions
(
Taylor & Francis
,
London
,
1990
).
43.
G. C.
Psarras
, “
Hopping conductivity in polymer matrix–metal particles composites
,”
Composites, Part A
37
,
1545
1553
(
2006
).
44.
L. C.
Costa
, and
F.
Henry
, “
DC electrical conductivity of carbon black polymer composites at low temperatures
,”
J. Non-Cryst. Solids
357
,
1741
1744
(
2011
).
45.
N.
Hu
,
Y.
Karube
,
M.
Arai
,
T.
Watanabe
,
C.
Yan
,
Y.
Li
,
Y.
Liu
, and
H.
Fukunaga
, “
Investigation on sensitivity of a polymer/carbon nanotube composite strain sensor
,”
Carbon
48
,
680
687
(
2010
).
46.
Y.-R.
Lai
,
K.-F.
Yu
,
Y.-H.
Lin
,
J.-C.
Wu
, and
J.-J.
Lin
, “
Observation of fluctuation-induced tunneling conduction in micrometer-sized tunnel junctions“
,”
AIP Adv.
2
,
032155
(
2012
).
47.
T. A.
Len
,
L. L.
Vovchenko
,
O. V.
Turkov
,
O. V.
Lozitsky
, and
L. Y.
Matzui
, “
Electrical and thermal properties of epoxy composites filled with carbon nanotubes and inorganic particles
,”
Mol. Cryst. Liq. Cryst.
717
,
109
120
(
2021
).
48.
O. V.
Lozitsky
,
L. L.
Vovchenko
,
L. Y.
Matzui
,
V. V.
Oliynyk
, and
V. V.
Zagorodnii
, “
Microwave properties of epoxy composites with mixed filler cabon nanotubes/BaTiO3
,”
Appl. Nanosci.
10
(
8
),
2759
2767
(
2020
).
49.
S.
Sankaran
,
K.
Deshmukh
,
M.
Basheer Ahamed
, and
S. K.
Khadheer Pasha
, “
Recent advances in electromagnetic interference shielding properties of metal and carbon filler reinforced flexible polymer composites: A review
,”
Composites, Part A
114
,
49
71
(
2018
).
50.
J.
Wei
,
S.
Zhang
,
X.
Liu
,
J.
Qian
,
J.
Hua
,
X.
Li
, and
Q.
Zhuang
, “
In situ synthesis of ternary BaTiO3/MWNT/PBO electromagnetic microwave absorption composites with excellent mechanical properties and thermostabilities
,”
J. Mater. Chem. A
3
,
8205
8214
(
2015
).
51.
P. C.
Watts
,
W. K.
Hsu
,
A.
Barnes
, and
B.
Chambers
, “
High permittivity from defective multiwalled carbon nanotubes in the X-band
,”
Adv. Mater.
15
,
600
603
(
2003
).
52.
L.
Bai
,
Y.
Wang
,
F.
Li
,
D.
An
,
Z.
Zhang
, and
Y.
Liu
, “
Enhanced electromagnetic wave absorption properties of MoS2-graphene hybrid nanosheets prepared by a hydrothermal method
,”
J. Sol-Gel Sci. Technol.
84
,
104
(
2017
).
53.
L. L.
Vovchenko
,
O. V.
Lozitsky
,
L. Y.
Matzui
,
V. V.
Oliynyk
, and
V. V.
Zagorodnii
, “
Microwave shielding and absorbing properties of single- and multilayered structures based on two-phase filler/epoxy composites
,”
Appl. Nanosci.
(published online) (
2021
).
54.
R.
Dosoudil
,
M.
Usakova
,
J.
Franek
,
J.
Slama
, and
A.
Gruskova
, “
Particle size and concentration effect on permeability and EM-wave absorption properties of hybrid ferrite polymer composites
,”
IEEE Trans. Magn.
46
,
436
439
(
2010
).
55.
X.
Lin
,
J.
Wang
,
Z.
Chu
,
D.
Liu
,
T.
Guo
,
L.
Yang
,
Z.
Huang
,
S.
Mu
, and
S.
Li
, “
The optimization of hydrothermal process of MoS2 nanosheets and their good microwave absorption performances
,”
Chin. Chem. Lett.
31
(
5
),
1124
1128
(
2020
).
56.
B.
Wang
,
J.
Wei
,
Y.
Yang
,
T.
Wang
, and
F. S.
Li
, “
Investigation on peak frequency of the microwawe absorption for carbonyl iron/epoxy resin composite
,”
J. Magn. Magn. Mater.
323
,
1101
1103
(
2011
).
57.
Q.-Q.
Ni
,
Y.-F.
Zhu
,
L.-J.
Yu
, and
Y.-Q.
Fu
, “
One-dimensional carbon nanotube@barium titanate@polyaniline multiheterostructures for microwave absorbing application
,”
Nanoscale Res. Lett.
10
,
174
(
2015
).
58.
G. P.
Kar
,
S.
Biswas
,
R.
Rohini
, and
S.
Bose
, “
Tailoring the dispersion of multiwall carbon nanotubes in co-continuous PVDF/ABS blends to design materials with enhanced electromagnetic interference shielding
,”
J. Mater. Chem.
3
(
15
),
7974
7985
(
2015
).
You do not currently have access to this content.