The magnetic field is the most important element in designing a Hall thruster and improving thruster performance because it directly influences the behavior of electrons in the discharge channel. In this work, magnetic field tailoring, parallel magnetic fields to the thruster channel wall, has been attempted in a cylindrical Hall thruster, and the resultant ion beam properties are studied. The magnetic field tailored cylindrical Hall thruster demonstrated much higher ion current and propellant efficiencies than the conventional cylindrical Hall thruster, with an identical mass flow rate. A large fraction of multiply charged ions (>65%) was observed and reduced beam emission was demonstrated near the channel wall. Further, the channel wall is solely coated without erosion even at the end of the channel. Hence, tailoring of the magnetic field in cylindrical Hall thrusters could significantly enhance the potential of Hall thrusters in space applications owing to their higher propellant efficiency and reduced wall interaction.

1.
D. M.
Goebel
and
I.
Katz
,
Fundamentals of Electric Propulsion: Ion and Hall Thrusters
(
John Wiley & Sons
,
Hoboken
,
2008
).
2.
V. V.
Zhurin
,
H. R.
Kaufman
, and
R. S.
Robinson
, “
Physics of closed drift thrusters
,”
Plasma Sources Sci. Technol.
8
,
R1
(
1999
).
3.
J. P.
Boeuf
, “
Tutorial: Physics and modeling of Hall thrusters
,”
J. Appl. Phys.
121
,
011101
(
2017
).
4.
D.
Lev
,
R. M.
Myers
,
K. M.
Lemmer
,
J.
Kolbeck
,
H.
Koizumi
, and
K.
Polzin
, “
The technological and commercial expansion of electric propulsion
,”
Acta Astronaut.
159
,
213
(
2019
).
5.
S.
Mazouffre
,
S.
Tsikata
, and
J.
Vaudolon
, “
Development and experimental characterization of a wall-less Hall thruster
,”
J. Appl. Phys.
116
,
243302
(
2014
).
6.
S.
Mazouffre
,
K.
Dannenmayer
, and
J.
Pérez-Luna
, “
Examination of plasma-wall interactions in Hall effect thrusters by means of calibrated thermal imaging
,”
J. Appl. Phys.
102
,
023304
(
2007
).
7.
S.
Mazouffre
,
K.
Dannenmayer
, and
C.
Blank
, “
Impact of discharge voltage on wall-losses in a Hall thruster
,”
Phys. Plasmas
18
,
064501
(
2011
).
8.
E.
Ahedo
,
J.
Gallardo
, and
M.
Martınez-Sánchez
, “
Effects of the radial plasma-wall interaction on the Hall thruster discharge
,”
Phys. Plasmas
10
,
3397
(
2003
).
9.
I.
Kaganovich
,
Y.
Raitses
,
D.
Sydorenko
, and
A.
Smolyakov
, “
Kinetic effects in a Hall thruster discharge
,”
Phys. Plasmas
14
,
057104
(
2007
).
10.
I. G.
Mikellides
,
I.
Katz
,
R. R.
Hofer
, and
D. M.
Goebel
, “
Magnetic shielding of a laboratory Hall thruster. I: Theory and validation
,”
J. Appl. Phys.
115
,
043303
(
2014
).
11.
A.
Smirnov
,
Y.
Raitses
, and
N.
Fisch
, “
Electron cross-field transport in a low power cylindrical Hall thruster
,”
Phys. Plasmas
11
,
4922
(
2004
).
12.
H.
Kim
,
Y.
Lim
,
W.
Choe
, and
J.
Seon
, “
Effect of multiply charged ions on the performance and beam characteristics in annular and cylindrical type Hall thruster plasmas
,”
Appl. Phys. Lett.
105
,
144104
(
2014
).
13.
M.
Seo
,
J.
Lee
,
J.
Seon
,
H. J.
Lee
, and
W.
Choe
, “
Radial scale effect on the performance of low-power cylindrical Hall plasma thrusters
,”
Appl. Phys. Lett.
103
,
133501
(
2013
).
14.
M.
Seo
,
J.
Lee
,
J.
Seon
,
H. J.
Lee
, and
W.
Choe
, “
Effect of the annular region on the performance of a cylindrical Hall plasma thruster
,”
Phys. Plasmas
20
,
023507
(
2013
).
15.
J.
Lee
,
M.
Seo
,
J.
Seon
,
H. J.
Lee
, and
W.
Choe
, “
Performance characteristics according to the channel length and magnetic fields of cylindrical Hall thrusters
,”
Appl. Phys. Lett.
99
,
131505
(
2011
).
16.
Y.
Lim
,
H.
Kim
,
W.
Choe
,
S. H.
Lee
,
J.
Seon
, and
H. J.
Lee
, “
Observation of a high-energy tail in ion energy distribution in the cylindrical Hall thruster plasma
,”
Phys. Plasmas
21
,
103502
(
2014
).
17.
H.
Kim
,
Y.
Lim
,
W.
Choe
,
S.
Park
, and
J.
Seon
, “
Effect of magnetic field configuration on the multiply charged ion and plume characteristics in Hall thruster plasmas
,”
Appl. Phys. Lett.
106
,
154103
(
2015
).
18.
H.
Kim
,
W.
Choe
,
Y.
Lim
,
S.
Lee
, and
S.
Park
, “
Magnetic field configurations on thruster performance in accordance with ion beam characteristics in cylindrical Hall thruster plasmas
,”
Appl. Phys. Lett.
110
,
114101
(
2017
).
19.
Y.
Lim
,
W.
Choe
,
S.
Mazouffre
,
J. S.
Park
,
H.
Kim
,
J.
Seon
, and
L.
Garrigues
, “
Nonlinear ion dynamics in Hall thruster plasma source by ion transit-time instability
,”
Plasma Sources Sci. Technol.
26
,
03LT1
(
2017
).
20.
A.
Smirnov
,
Y.
Raitses
, and
N. J.
Fisch
, “
Experimental and theoretical studies of cylindrical Hall thrusters
,”
Phys. Plasmas
14
,
057106
(
2007
).
21.
M.
Keidar
and
I. D.
Boyd
, “
Effect of a magnetic field on the plasma plume from Hall thrusters
,”
J. Appl. Phys.
86
,
4786
(
1999
).
22.
D.
Gawron
,
S.
Mazouffre
,
N.
Sadeghi
, and
A.
Heron
, “
Influence of magnetic field and discharge voltage on the acceleration layer features in a Hall effect thruster
,”
Plasma Sources Sci. Technol.
17
,
025001
(
2008
).
23.
Y.
Raitses
,
E.
Merino
, and
N. J.
Fisch
, “
Cylindrical Hall thrusters with permanent magnets
,”
J. Appl. Phys.
108
,
093307
(
2010
).
24.
M. E.
Griswold
,
Y.
Raitses
, and
N. J.
Fisch
, “
Cross-field plasma lens for focusing of the Hall thruster plume
,”
Plasma Sources Sci. Technol.
23
,
044005
(
2014
).
25.
Y.
Gao
,
H.
Liu
,
P.
Hu
,
H.
Huang
, and
D.
Yu
, “
Performance characteristics according to the radial position of gas distributor holes in a low-power cylindrical Hall thruster
,”
Plasma Sources Sci. Technol.
25
,
035011
(
2016
).
26.
R. R.
Hofer
, “
Development and characterization of high-efficiency, high specific impulse xenon Hall thrusters
,”
Ph.D. dissertation
(
University of Michigan
,
2004
).
27.
K. D.
Diamant
,
J. E.
Pollard
,
Y.
Raitses
, and
N. J.
Fisch
, “
Ionization, plume properties, and performance of cylindrical Hall thrusters
,”
IEEE Trans. Plasma Sci.
38
,
1052
(
2010
).
28.
R. R.
Hofer
,
D. M.
Goebel
,
I. G.
Mikellides
, and
I.
Katz
, “
Magnetic shielding of a laboratory Hall thruster: II. Experiments
,”
J. Appl. Phys.
115
,
043304
(
2014
).
29.
R. R.
Hofer
,
D. M.
Goebel
,
I. G.
Mikellides
, and
I.
Katz
, “
Design of a laboratory Hall thruster with magnetically shielded channel walls, phase II: Experiments
,” in
48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit
,
30 July–1 August 2012
,
Atlanta, Georgia
, AIAA-2012-3788 (AIAA,
2012
).
30.
G.
Doh
,
J.
Park
,
D.
Lee
,
H.
Kim
, and
W.
Choe
, “
Determination of the ionization region in Hall thruster plasmas with low perturbation
,”
J. Appl. Phys.
130
,
193301
(
2021
).
31.
R. W.
Conversano
,
R. B.
Lobbia
,
T. V.
Kerber
,
K. C.
Tilley
,
D. M.
Goebel
, and
S. W.
Reilly
, “
Performance characterization of a low-power magnetically shielded Hall thruster with an internally-mounted hollow cathode
,”
Plasma Sources Sci. Technol.
28
(
10
),
105011
(
2019
).
You do not currently have access to this content.