Plasma oscillations below 100 kHz in a high-power, magnetically shielded Hall-effect thruster are characterized experimentally. A time-resolved laser-induced fluorescence diagnostic was used to measure the evolution of the axial ion velocity distribution along the discharge channel centerline. A method was developed to correct for artificial broadening of the distribution due to finite spatial resolution, enabling accurate ion temperature measurements in the acceleration region. Time-dependent ion heating behavior is revealed, which varies with axial location. Electrostatic, collisionless particle-pushing calculations were employed to simulate the effects of a shifting acceleration front on ion motion. It is found that ions exchange energy with these oscillations, which accounts for a portion of the ion velocity fluctuations observed in the thruster plume. Phasing relationships between ion dynamics and discharge current oscillations are discussed in the context of prior Hall thruster experiments.

1.
D. M.
Goebel
and
I.
Katz
,
Fundamentals of Electric Propulsion: Ion and Hall Thrusters
(
Jet Propulsion Laboratory, California Institute of Technology
,
2008
).
2.
K.
De Grys
,
A.
Mathers
,
B.
Welander
, and
V.
Khayms
, “Demonstration of 10,400 hours of operation on a 4.5 kW qualification model Hall thruster,” in 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Nashville, TN (AIAA, 2010), AIAA 2010-6698.
3.
I. G.
Mikellides
,
I.
Katz
,
R. R.
Hofer
, and
D. M.
Goebel
, “
Magnetic shielding of a laboratory Hall thruster. I. Theory and validation
,”
J. Appl. Phys.
115
,
043303
(
2014
).
4.
R. R.
Hofer
,
D. M.
Goebel
,
I. G.
Mikellides
, and
I.
Katz
, “
Magnetic shielding of a laboratory Hall thruster. II. Experiments
,”
J. Appl. Phys.
115
,
043304
(
2014
).
5.
A.
Lopez Ortega
and
I. G.
Mikellides
, “Investigations of pole erosion mechanisms in the 12.5 kW HERMeS Hall thruster using numerical simulations and ion velocity measurements,” in AIAA Propulsion and Energy Forum, 2018 Joint Propulsion Conference, Cincinnati, OH (AIAA, 2018), AIAA 2018-4647.
6.
A.
Lopez Ortega
,
I. G.
Mikellides
, and
V. H.
Chaplin
, “Numerical simulations for the assessment of erosion in the 12.5 kW Hall effect rocket with magnetic shielding (HERMeS),” in 35th International Electric Propulsion Conference, Atlanta, GA (ERPS, 2017), IEPC-2017-154.
7.
B. A.
Jorns
,
C.
Dodson
,
J.
Anderson
,
D. M.
Goebel
,
R. R.
Hofer
,
M.
Sekerak
,
A.
Lopez Ortega
, and
I.
Mikellides
, “Mechanisms for pole piece erosion in a 6-kW magnetically-shielded Hall thruster,” in Propulsion and Energy Forum, 52nd AIAA/SAE/ASEE Joint Propulsion Conference, Salt Lake City, UT (AIAA, 2016), AIAA 2016-4839.
8.
C.
Boniface
,
L.
Garrigues
,
G. J.
Hagelaar
,
J. P.
Boeuf
,
D.
Gawron
, and
S.
Mazouffre
, “
Anomalous cross field electron transport in a Hall effect thruster
,”
Appl. Phys. Lett.
89
,
161503
(
2006
).
9.
E. Y.
Choueiri
, “
Plasma oscillations in Hall thrusters
,”
Phys. Plasmas
8
,
1411
1426
(
2001
).
10.
J. P.
Boeuf
and
L.
Garrigues
, “
Low frequency oscillations in a stationary plasma thruster
,”
J. Appl. Phys.
84
,
3541
3554
(
1998
).
11.
I. G.
Mikellides
,
I.
Katz
,
D. M.
Goebel
, and
K. K.
Jameson
, “
Evidence of nonclassical plasma transport in hollow cathodes for electric propulsion
,”
J. Appl. Phys.
101
,
063301
(
2007
).
12.
I. G.
Mikellides
and
I.
Katz
, “
Wear mechanisms in electron sources for ion propulsion, I: Neutralizer hollow cathode
,”
J. Propul. Power
24
,
855
865
(
2008
).
13.
B. A.
Jorns
,
I. G.
Mikellides
, and
D. M.
Goebel
, “
Ion acoustic turbulence in a 100-A LaB6 hollow cathode
,”
Phys. Rev. E
90
,
063106
(
2014
).
14.
J.
Cavalier
,
N.
Lemoine
,
G.
Bonhomme
,
S.
Tsikata
,
C.
Honoré
, and
D.
Grésillon
, “
Hall thruster plasma fluctuations identified as the E × B electron drift instability: Modeling and fitting on experimental data
,”
Phys. Plasmas
20
,
082107
(
2013
).
15.
J. P.
Boeuf
and
L.
Garrigues
, “
E × B electron drift instability in Hall thrusters: Particle-in-cell simulations vs theory
,”
Phys. Plasmas
25
,
061204
(
2018
).
16.
E. T.
Dale
and
B. A.
Jorns
, “
Non-invasive time-resolved measurements of anomalous collision frequency in a Hall thruster
,”
Phys. Plasmas
26
,
013516
(
2019
).
17.
A.
Lopez Ortega
,
I. G.
Mikellides
,
V. H.
Chaplin
,
W.
Huang
, and
J. D.
Frieman
, “Anomalous ion heating and pole erosion in the 12.5 kW Hall effect rocket with magnetic shielding (HERMeS),” in AIAA Propulsion and Energy 2020 Forum—Virtual (AIAA, 2020), AIAA 2020-3620.
18.
I. G.
Mikellides
and
A.
Lopez Ortega
, “
Growth of the modified two-stream instability in the plume of a magnetically shielded Hall thruster
,”
Phys. Plasmas
27
,
100701
(
2020
).
19.
I. G.
Mikellides
and
A.
Lopez Ortega
, “
Growth of the lower hybrid drift instability in the plume of a magnetically shielded Hall thruster
,”
J. Appl. Phys.
129
,
193301
(
2021
).
20.
M. J.
Sekerak
, “Plasma oscillations and operational modes in Hall effect thrusters,” Ph.D. thesis (University of Michigan, 2014).
21.
R. R.
Hofer
,
B. A.
Jorns
,
J. E.
Polk
,
I. G.
Mikellides
, and
J. S.
Snyder
, “Wear test of a magnetically shielded Hall thruster at 3000 seconds specific impulse,” in 33rd International Electric Propulsion Conference (ERPS, 2013).
22.
M. J.
Sekerak
,
R. R.
Hofer
,
J. E.
Polk
,
B. A.
Jorns
, and
I. G.
Mikellides
, “Wear testing of a magnetically shielded Hall thruster at 2000 s specific impulse,” in 34th International Electric Propulsion Conference (ERPS, 2015), IEPC-2015-155.
23.
R. R.
Hofer
,
R.
Lobbia
,
V.
Chaplin
,
A.
Lopez Ortega
,
I.
Mikellides
,
J.
Polk
,
H.
Kamhawi
,
J.
Frieman
,
W.
Huang
,
P.
Peterson
, and
D.
Herman
, “Completing the development of the 12.5 kW Hall effect rocket with magnetic shielding (HERMeS),” in 36th International Electric Propulsion Conference, Vienna, Austria (ERPS, 2019).
24.
D. A.
Herman
,
T.
Gray
,
I.
Johnson
,
T.
Kerl
,
T.
Lee
, and
T.
Silva
, “The application of advanced electric propulsion on the NASA power and propulsion element (PPE),” in 36th International Electric Propulsion Conference (ERPS, 2019), IEPC-2019-651.
25.
V. H.
Chaplin
,
R. B.
Lobbia
,
A.
Lopez Ortega
,
I. G.
Mikellides
,
R. R.
Hofer
,
J. E.
Polk
, and
A. J.
Friss
, “
Time-resolved ion velocity measurements in a high-power Hall thruster using laser-induced fluorescence with transfer function averaging
,”
Appl. Phys. Lett.
116
,
234107
(
2020
).
26.
I. G.
Mikellides
and
I.
Katz
, “
Numerical simulations of Hall-effect plasma accelerators on a magnetic-field-aligned mesh
,”
Phys. Rev. E
86
,
046703
(
2012
).
27.
J. D.
Frieman
,
H.
Kamhawi
,
G.
Williams
,
D. A.
Herman
,
P. Y.
Peterson
,
J. H.
Gilland
, and
R. R.
Hofer
, “Long duration wear test of the NASA HERMeS Hall thruster,” in AIAA Propulsion and Energy Forum, 2018 Joint Propulsion Conference, Cincinnati, OH (AIAA, 2018), AIAA 2018-4645.
28.
V. H.
Chaplin
,
B. A.
Jorns
,
A.
Lopez Ortega
,
I. G.
Mikellides
,
R. W.
Conversano
,
R. B.
Lobbia
, and
R. R.
Hofer
, “
Laser-induced fluorescence measurements of acceleration zone scaling in the 12.5 kW HERMeS Hall thruster
,”
J. Appl. Phys.
124
,
183302
(
2018
).
29.
W. A.
Hargus
and
M. A.
Cappelli
, “
Laser-induced fluorescence measurements of velocity within a Hall discharge
,”
Appl. Phys. B
72
,
961
969
(
2001
).
30.
C. V.
Young
,
A. L.
Fabris
,
N. A.
Macdonald-Tenenbaum
,
W. A.
Hargus
, and
M. A.
Cappelli
, “
Time-resolved laser-induced fluorescence diagnostics for electric propulsion and their application to breathing mode dynamics
,”
Plasma Sources Sci. Technol.
27
,
094004
(
2018
).
31.
C. J.
Durot
, “Development of a time-resolved laser-induced fluorescence technique for nonperiodic oscillations,” Ph.D. thesis (University of Michigan, 2016).
32.
V. H.
Chaplin
,
B. A.
Jorns
,
A.
Lopez Ortega
,
I. G.
Mikellides
,
R. W.
Conversano
,
R. B.
Lobbia
, and
R. R.
Hofer
, “
Laser-induced fluorescence measurements of the acceleration zone in the 12.5 kW HERMeS Hall thruster
,” in
35th International Electric Propulsion Conference, Atlanta, GA
(ERPS, 2017), IEPC-2017-229.
33.
W.
Huang
, “Study of Hall thruster discharge channel wall erosion via optical diagnostics,” Ph.D. thesis (University of Michigan, 2011).
34.
W.
Huang
,
H.
Kamhawi
, and
D. A.
Herman
, “Ion velocity in the discharge channel and near-field of the HERMeS Hall thruster,” in AIAA Propulsion and Energy Forum, 2018 Joint Propulsion Conference, Cincinnati, OH (AIAA, 2018), AIAA 2018-4723.
35.
A. L.
Fabris
,
C. V.
Young
, and
M. A.
Cappelli
, “
Time-resolved laser-induced fluorescence measurement of ion and neutral dynamics in a Hall thruster during ionization oscillations
,”
J. Appl. Phys.
118
,
233301
(
2015
).
36.
A.
Diallo
,
S.
Keller
,
Y.
Shi
,
Y.
Raitses
, and
S.
Mazouffre
, “
Time-resolved ion velocity distribution in a cylindrical Hall thruster: Heterodyne-based experiment and modeling
,”
Rev. Sci. Instrum.
86
,
033506
(
2015
).
37.
M. J.
Baird
,
T. V.
Kerber
,
K. M.
Lemmer
, and
W.
Huang
, “Hall thruster plume measurements of time resolved ion energy,” in 36th International Electric Propulsion Conference, Vienna, Austria (ERPS, 2019), IEPC-2019-516.
38.
S.
Mazouffre
,
V.
Kulaev
, and
J.
Pérez Luna
, “
Ion diagnostics of a discharge in crossed electric and magnetic fields for electric propulsion
,”
Plasma Sources Sci. Technol.
18
,
034022
(
2009
).
You do not currently have access to this content.