The formation and growth of plasma kernels generated via nano-second mode-beating laser pulses is investigated here via a non-equilibrium self-consistent computational model. Chemically reactive Navier–Stokes equations are used to describe the hydrodynamics, and non-equilibrium effects are taken into account with a two-temperature model. Inverse Bremsstrahlung and multiphoton ionization are included self-consistently in the model via a coupled solution of the plasma governing equations and the radiative transfer equation (that describes the laser beam propagation and attenuation). A self-consistent approach (despite carrying additional challenges) minimizes the empiricism and it allows for a more accurate description since it prevents both the utilization of artificial plasma seeds to trigger the breakdown and the implementation of tuning parameters to simulate the laser-energy deposition. The advantages of this approach are confirmed by the good agreement between the numerically predicted and the experimentally measured plasma boundary evolution and absorbed energy. This also holds true for the periodic plasma kernel structures that, as suggested by the experiments and confirmed by the simulations presented here, are connected to the modulating frequency.

1.
L. J.
Radziemski
and
D. A.
Cremers
,
Laser-Induced Plasmas and Applications
(
CRC Press
,
1989
).
2.
C. G.
Morgan
, “
Laser-induced breakdown of gases
,”
Rep. Prog. Phys.
38
,
621
(
1975
).
3.
G. V.
Ostrovskaya
et al., “
Laser spark in gases
,”
Sov. Phys. Usp.
16
,
834
(
1974
).
4.
C. G.
Morgan
, “
Laser-induced breakdown phenomena
,”
Sci. Prog.
65
,
31
50
(
1978
). https://www.jstor.org/stable/43420443
5.
Y. P.
Raizer
, “
Optical discharges
,”
Sov. Phys. Usp.
23
,
789
806
(
1980
).
6.
L.
Massa
,
J.
Retter
,
N. G.
Glumac
,
G. S.
Elliot
, and
J. B.
Freund
, “Fluid-plasma coupling in hydrogen flames,” in APS Division of Fluid Dynamics Meeting Abstracts (American Physical Society, 2015).
7.
L.
Massa
and
J. B.
Freund
, “
Plasma-combustion coupling in a dielectric-barrier discharge actuated fuel jet
,”
Combust. Flame
184
,
208
232
(
2017
).
8.
S. M.
Starikovskaia
, “
Plasma assisted ignition and combustion
,”
J. Phys. D: Appl. Phys.
39
,
R265
(
2006
).
9.
R.
Mahamud
,
A. A.
Tropina
,
M. N.
Shneider
, and
R. B.
Miles
, “
Dual-pulse laser ignition model
,”
Phys. Fluids
30
,
106104
(
2018
).
10.
C.
Dumitrache
and
A. P.
Yalin
, “Numerical modeling of the hydrodynamics induced by dual-pulse plasma,” in 2018 AIAA Aerospace Sciences Meeting (AIAA, 2018), p. 0689.
11.
C.
Dumitrache
,
C.
Limbach
, and
A. P.
Yalin
, “Laser thermal ignition using a dual-pulse approach,” in 54th AIAA Aerospace Sciences Meeting (AIAA, 2016), p. 0460.
12.
C.
Butte
,
C.
Dumitrache
, and
A. P.
Yalin
, “Properties of dual-pulse laser plasmas and ignition characteristics in propane-air and methane-air mixtures,” in AIAA Scitech 2019 Forum (AIAA, 2019), p. 0464.
13.
C.
Dumitrache
,
R.
VanOsdol
,
C.
Limbach
, and
A. P.
Yalin
, “
Control of early flame kernel growth by multi-wavelength laser pulses for enhanced ignition
,”
Sci. Rep.
7
,
10239
(
2017
).
14.
T.
Sato
,
A.
Alberti
,
A.
Munafò
,
M.
Panesi
,
K.
Matsuoka
,
A.
Kawasaki
, and
J.
Kasahara
, “Numerical study on early-times laser controlled detonative propulsion,” in AIAA Scitech 2021 Forum (AIAA, 2021), p. 0802.
15.
C. M.
Limbach
, “Characterization of nanosecond, femtosecond and dual pulse laser energy deposition in air for flow control and diagnostic applications,” Ph.D. thesis (Princeton University, Princeton, 2015).
16.
D. D.
Knight
, “
Survey of aerodynamic drag reduction at high speed by energy deposition
,”
J. Propul. Power
24
,
1153
1167
(
2008
).
17.
N.
Kianvashrad
and
D. D.
Knight
, “Non-equilibrium effects of interaction of laser discharge with hemisphere-cylinder in supersonic flow,” in 2018 Flow Control Conference (AIAA, 2018), p. 3757.
18.
A.
Pournadali Khamseh
and
E. P.
DeMauro
, “Towards trajectory control of a supersonic projectile using laser energy deposition,” in AIAA Scitech 2019 Forum (AIAA, 2019), p. 1347.
19.
A.
Starikovskiy
,
C.
Limbach
, and
R. B.
Miles
, “Trajectory control of small rotating projectiles by laser sparks,” in 54th AIAA Aerospace Sciences Meeting (
American Institute of Aeronautics and Astronautics
, 2016), p. 0459.
20.
N.
Kianvashrad
and
D. D.
Knight
, “
Nonequilibrium effects on prediction of aerothermodynamic loading for a double cone
,”
AIAA J.
20
,
1
18
(
2019
).
21.
C.
Trefny
and
V.
Dippold
, “Supersonic free-jet combustion in a ramjet burner,” in 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit (AIAA, 2010), p. 6643.
22.
C. J.
Trefny
,
V. F.
Dippold III
, and
S.
Yungster
, “Dual-mode free-jet combustor,” NASA Technical Report (2017).
23.
A.
Zheltovodov
,
E.
Pimonov
, and
D.
Knight
, “Energy deposition influence on supersonic flow over axisymmetric bodies,” in 45th AIAA Aerospace Sciences Meeting and Exhibit (AIAA, 2007), p. 1230.
24.
R. G.
Adelgren
,
H.
Yan
,
G. S.
Elliott
,
D. D.
Knight
,
T. J.
Beutner
, and
A. A.
Zheltovodov
, “
Control of edney IV interaction by pulsed laser energy deposition
,”
AIAA J.
43
,
256
269
(
2005
).
25.
A.
Alberti
,
A.
Munafò
,
C.
Pantano
, and
M.
Panesi
, “Supersonic and hypersonic non-equilibrium flow control using laser energy deposition,” in AIAA Aviation 2019 Forum (AIAA, 2019), p. 2867.
26.
A.
Alberti
,
A.
Munafò
,
C.
Pantano
, and
M.
Panesi
, “
Self-consistent computational fluid dynamics of supersonic drag reduction via upstream-focused laser-energy deposition
,”
AIAA J.
59
,
1214
1224
(
2021
).
27.
A. P.
Khamseh
,
R. M.
Kiriakos
, and
E. P.
DeMauro
, “
Stereoscopic particle image velocimetry of laser energy deposition on a Mach 3.4 flow field
,”
Exp. Fluids
62
,
1
19
(
2021
).
28.
A. N.
Panchenko
,
M. A.
Shulepov
,
A. E.
Tel’Minov
,
L. A.
Zakharov
,
A. A.
Paletsky
, and
N. M.
Bulgakova
, “
Pulsed IR laser ablation of organic polymers in air: Shielding effects and plasma pipe formation
,”
J. Phys. D: Appl. Phys.
44
,
385201
(
2011
).
29.
G.
Colonna
,
A.
Casavola
, and
M.
Capitelli
, “
Modelling of LIBS plasma expansion
,”
Spectrochim. Acta, Part B
56
,
567
586
(
2001
).
30.
S.
Musazzi
and
U.
Perini
, “LIBS instrumental techniques,” in Laser-Induced Breakdown Spectroscopy (Springer, 2014), pp. 59–89.
31.
S. S.
Harilal
,
P. J.
Skrodzki
,
A.
Miloshevsky
,
B. E.
Brumfield
,
M. C.
Phillips
, and
G.
Miloshevsky
, “
On-and off-axis spectral emission features from laser-produced gas breakdown plasmas
,”
Phys. Plasmas
24
,
063304
(
2017
).
32.
C.
De Michelis
, “
Laser induced gas breakdown: A bibliographical review
,”
IEEE J. Quantum Electron.
5
,
188
202
(
1969
).
33.
Y. B.
Zel’dovich
and
Y. P.
Raizer
, “
Cascade ionization of a gas by a light pulse
,”
Sov. Phys. JETP
20
,
772
(
1965
).
34.
Y. B.
Zel’dovich
and
Y. P.
Raizer
,
Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena
(
Academic Press Inc.
,
New York
,
1967
).
35.
D.
Bradley
,
C. G. W.
Sheppard
,
I. M.
Suardjaja
, and
R.
Woolley
, “
Fundamentals of high-energy spark ignition with lasers
,”
Comb. Flame
138
,
55
77
(
2004
).
36.
T. X.
Phuoc
and
F. P.
White
, “
An optical and spectroscopic study of laser-induced sparks to determine available ignition energy
,”
Proc. Combust. Inst.
29
,
1621
1628
(
2002
).
37.
A.
Munafò
,
A.
Alberti
,
C.
Pantano
,
J. B.
Freund
, and
M.
Panesi
, “
A computational model for nanosecond pulse laser-plasma interactions
,”
J. Comp. Phys.
406
,
109190
(
2020
).
38.
A.
Alberti
,
A.
Munafò
,
M.
Koll
,
M.
Nishihara
,
C.
Pantano
,
J. B.
Freund
,
G.
Elliott
, and
M.
Panesi
, “
Laser-induced non-equilibrium plasma kernel dynamics
,”
J. Phys. D: Appl. Phys.
53
(2),
025201
(
2019
).
39.
A.
Alberti
,
A.
Munafò
,
C.
Pantano
,
J. B.
Freund
, and
M.
Panesi
, “
Collinear dual-pulse laser optical breakdown and energy deposition
,”
J. Phys. D: Appl. Phys.
53
,
205202
(
2020
).
40.
S. S.
Harilal
,
B. E.
Brumfield
, and
M. C.
Phillips
, “
Lifecycle of laser-produced air sparks
,”
Phys. Plasmas
22
,
063301
(
2015
).
41.
J.
Oxenius
,
Kinetic Theory of Particles and Photons: Theoretical Foundations of Non-LTE Plasma Spectroscopy
(
Springer Science & Business Media
,
2012
), Vol. 20.
42.
R.
Kandala
and
G. V.
Candler
, “
Numerical studies of laser-induced energy deposition for supersonic flow control
,”
AIAA J.
42
,
2266
2275
(
2004
).
43.
A. A.
Tropina
,
R. B.
Miles
, and
M. N.
Shneider
, “
Mathematical model of dual-pulse laser ignition
,”
J. Prop. Power
34
,
408
414
(
2017
).
44.
S.
Sai Shiva
,
C.
Leela
,
P.
Prem Kiran
,
C. D.
Sijoy
,
V. R.
Ikkurthi
, and
S.
Chaturvedi
, “
Numerical investigation of nanosecond laser induced plasma and shock wave dynamics from air using 2D hydrodynamic code
,”
Phys. Plasmas
24
,
083110
(
2017
).
45.
R.
Mahamud
,
A. A.
Tropina
,
M. N.
Shneider
, and
R. B.
Miles
, “
Dual-pulse laser ignition model
,”
Phys. Fluids
30
,
106104
(
2018
).
46.
A.
Casavola
,
G.
Colonna
,
A.
De Giacomo
,
O.
De Pascale
, and
M.
Capitelli
, “
Experimental and theoretical investigation of laser-induced plasma of a titanium target
,”
Appl. Opt.
42
,
5963
5970
(
2003
).
47.
A.
Alberti
, “Multi-scale modeling of laser induced breakdown in non-equilibrium plasmas,” Ph.D. thesis (University of Illinois at Urbana-Champaign, Urbana, 2020).
48.
I. G.
Dors
and
C. G.
Parigger
, “
Computational fluid-dynamic model of laser-induced breakdown in air
,”
Appl. Opt.
42
,
5978
5985
(
2003
).
49.
C.
Dumitrache
and
A. P.
Yalin
, “
Gas dynamics and vorticity generation in laser-induced breakdown of air
,”
Opt. Express
28
,
5835
5850
(
2020
).
50.
M.
Nishihara
,
J. B.
Freund
,
N. G.
Glumac
, and
G. S.
Elliott
, “
Influence of mode-beating pulse on laser-induced plasma
,”
J. Phys. D: Appl. Phys.
51
,
135601
(
2018
).
51.
P.
Sprangle
,
E.
Esarey
, and
A.
Ting
, “
Nonlinear theory of intense laser-plasma interactions
,”
Phys. Rev. Lett.
64
,
2011
(
1990
).
52.
P.
Mora
and
T. M.
Antonsen, Jr.
, “
Kinetic modeling of intense, short laser pulses propagating in tenuous plasmas
,”
Phys. Plasmas
4
,
217
229
(
1997
).
53.
J. H.
Cooley
, “Modeling laser pulse evolution in ionizing gas and plasma with application to laser wakefield acceleration,” Ph.D. thesis (University of Maryland, 2004).
54.
S.
Carusotto
and
C.
Strati
, “
Incoherent and coherent pulses and multiphoton absorption probability
,”
Il Nuovo Cimento B
15
,
159
180
(
1973
).
55.
C.
Lecompte
,
G.
Mainfray
,
C.
Manus
, and
F.
Sanchez
, “
Experimental demonstration of laser temporal coherence effects on multiphoton ionization processes
,”
Phys. Rev. Lett.
32
,
265
(
1974
).
56.
A.
Alcock
,
C.
Demichelis
, and
M.
Richardson
, “
Breakdown and self-focusing effects in gases produced by means of a single-mode ruby laser
,”
IEEE J. Quantum Electron.
6
,
622
629
(
1970
).
57.
L. R.
Evans
and
C. G.
Morgan
, “
Lens aberration effects in optical-frequency breakdown of gases
,”
Phys. Rev. Lett.
22
,
1099
(
1969
).
58.
L. Y.
Margolin
, “
Generation of periodic inhomogeneities in optical breakdown by a Bessel laser beam
,”
Quantum. Elec.
29
,
246
(
1999
).
59.
P.
Kaw
, “
Nonlinear effects of laser propagation in dense plasmas
,”
Appl. Phys. Lett.
15
,
16
18
(
1969
).
60.
P. A.
Gnoffo
,
R. N.
Gupta
, and
J. L.
Shinn
, “Conservation equations and physical models for hypersonic air flows in thermal and chemical nonequilibrium,” NASA Technical Paper 2867 (1989).
61.
C. G.
Morgan
, “
Some aspects of laser-produced plasmas
,”
Plasma Phys. Controlled Fusion
26
(12A),
1367
(
1984
).
62.
N.
Kroll
and
K. M.
Watson
, “
Theoretical study of ionization of air by intense laser pulses
,”
Phys. Rev. A
5
,
1883
(
1972
).
63.
D. R.
Skinner
and
R. E.
Whitcher
, “
Measurement of the radius of a high-power laser beam near the focus of a lens
,”
J. Phys. E: Sci. Instrum.
5
,
237
(
1972
).
64.
N.
Tsuda
and
J.
Yamada
, “
Observation of forward breakdown mechanism in high-pressure argon plasma produced by irradiation by an excimer laser
,”
J. Appl. Phys.
81
,
582
596
(
1997
).
65.
N.
Tsuda
and
J.
Yamada
, “
Mechanism of forward development of a plasma produced by an excimer laser in high-pressure argon gases
,”
J. Appl. Phys.
87
,
2122
2126
(
2000
).
66.
S.
Yalçin
,
D. R.
Crosley
,
G. P.
Smith
, and
G. W.
Faris
, “
Influence of ambient conditions on the laser air spark
,”
Appl. Phys. B
68
,
121
130
(
1999
).
67.
H.
El-Rabii
,
S. B.
Victorov
, and
A. P.
Yalin
, “
Properties of an air plasma generated by ultraviolet nanosecond laser pulses
,”
J. Phys. D: Appl. Phys.
42
,
075203
(
2009
).
68.
C.
Limbach
and
R.
Miles
, “Simultaneous temperature, density and velocity measurements in laser-generated plasmas by Rayleigh and filtered Rayleigh scattering,” in 52nd Aerospace Sciences Meeting (AIAA, 2014), p. 0143.
69.
C.
Dumitrache
,
C. M.
Limbach
, and
A. P.
Yalin
, “
Threshold characteristics of ultraviolet and near infrared nanosecond laser induced plasmas
,”
Phys. Plasmas
23
,
093515
(
2016
).
70.
N.
Glumac
,
G.
Elliott
, and
M.
Boguszko
, “
Temporal and spatial evolution of a laser spark in air
,”
AIAA J.
43
,
1984
1994
(
2005
).
You do not currently have access to this content.