The apparent relationship between Poisson's ratio and fracture energy has been used to guide the discovery of ductile glasses with a brittle-to-ductile (BTD) transition at Poisson's ratio around 0.32. Most organic and metallic glasses possess Poisson's ratio above 0.32, and thus, feature fracture energy that is around three orders of magnitude higher than that of oxide glasses, which feature Poisson's ratio typically below 0.30. However, whether the BTD transition can also be observed in oxide glasses remains unknown due to the lack of fracture energy measurements on oxide glasses with high Poisson's ratio. In this work, we measure the fracture energy of six oxide glasses with high Poisson's ratio between 0.30 and 0.34. We find no clear relationship between the two parameters even in those that possess the same Poisson's ratio as ductile metallic glasses. This suggests that Poisson's ratio is not the main property to enhance the fracture energy of oxide glasses. To this end, we instead find a positive relation between fracture energy and Young's modulus of oxide glasses, and even for some metallic glasses, which could explain their absence of ductility.

1.
T.
Rouxel
and
S.
Yoshida
, “
The fracture toughness of inorganic glasses
,”
J. Am. Ceram. Soc.
100
,
4374
(
2017
).
2.
L.
Wondraczek
,
E.
Bouchbinder
,
A.
Ehrlicher
,
J. C.
Mauro
,
R.
Sajzew
, and
M. M.
Smedskjaer
, “
Advancing the mechanical performance of glasses: Perspectives and challenges
,”
Adv. Mater.
34
,
2109029
(
2022
).
3.
T.
To
, “
Fracture toughness and fracture surface of inorganic and Non-metallic glasses
,”
Ph.D. thesis
(
Université de Rennes 1
,
2019
).
4.
S.
Karlsson
,
B.
Jonson
, and
C.
Stålhandske
, “
The technology of chemical glass strengthening—A review
,”
Glass Technol. Part A
51
,
41
(
2010
).
5.
B.
Wang
,
Y.
Yu
,
M.
Wang
,
J. C.
Mauro
, and
M.
Bauchy
, “
Nanoductility in silicate glasses is driven by topological heterogeneity
,”
Phys. Rev. B
93
,
064202
(
2016
).
6.
K.
Zheng
,
C.
Wang
,
Y. Q.
Cheng
,
Y.
Yue
,
X.
Han
,
Z.
Zhang
,
Z.
Shan
,
S. X.
Mao
,
M.
Ye
,
Y.
Yin
, and
E.
Ma
, “
Electron-beam-assisted superplastic shaping of nanoscale amorphous silica
,”
Nat. Commun.
1
,
24
(
2010
).
7.
J.
Luo
,
J.
Wang
,
E.
Bitzek
,
J. Y.
Huang
,
H.
Zheng
,
L.
Tong
,
Q.
Yang
,
J.
Li
, and
S. X.
Mao
, “
Size-dependent brittle-to-ductile transition in silica glass nanofibers
,”
Nano Lett.
16
,
105
(
2016
).
8.
E. J.
Frankberg
,
J.
Kalikka
,
F. G.
Ferré
,
L.
Joly-Pottuz
,
T.
Salminen
,
J.
Hintikka
,
M.
Hokka
,
S.
Koneti
,
T.
Douillard
,
B.
Le Saint
,
P.
Kreiml
,
M. J.
Cordill
,
T.
Epicier
,
D.
Stauffer
,
M.
Vanazzi
,
L.
Roiban
,
J.
Akola
,
F.
Di Fonzo
,
E.
Levänen
, and
K.
Masenelli-Varlot
, “
Highly ductile amorphous oxide at room temperature and high strain rate
,”
Science
366
,
864
(
2019
).
9.
K.
Januchta
,
M.
Stepniewska
,
L. R.
Jensen
,
Y.
Zhang
,
M. A. J.
Somers
,
M.
Bauchy
,
Y.
Yue
, and
M. M.
Smedskjaer
, “
Breaking the limit of micro-ductility in oxide glasses
,”
Adv. Sci.
6
,
1901281
(
2019
).
10.
T.
To
,
S. S.
Sørensen
,
J. F. S.
Christensen
,
R.
Christensen
,
L. R.
Jensen
,
M.
Bockowski
,
M.
Bauchy
, and
M. M.
Smedskjaer
, “
Bond switching in densified oxide glass enables record-high fracture toughness
,”
ACS Appl. Mater. Interfaces
13
,
17753
(
2021
).
11.
S. F.
Pugh
, “
Relations between the elastic moduli and the plastic properties of polycrystalline pure metals
,”
Philos. Mag.
45
,
823
(
1954
).
12.
J. J.
Lewandowski
,
W. H.
Wang
, and
A. L.
Greer
, “
Intrinsic plasticity or brittleness of metallic glasses
,”
Philos. Mag. Lett.
85
,
77
(
2005
).
13.
G. N.
Greaves
,
A. L.
Greer
,
R. S.
Lakes
, and
T.
Rouxel
, “
Poisson’s ratio and modern materials
,”
Nat. Mater.
10
,
823
(
2011
).
14.
G. B.
Rouse
,
E. I.
Kamitsos
, and
W. M.
Risen
, “
Brillouin spectra of mixed alkali glasses: xCs2O(1–x)Na2O5SiO2
,”
J. Non. Cryst. Solids
45
,
257
(
1981
).
15.
G.
Srinivasarao
and
N.
Veeraiah
, “
Characterization and physical properties of PbO-As2O3 glasses containing molybdenum ions
,”
J. Solid State Chem.
166
,
104
(
2002
).
16.
K.
Januchta
,
R.
Sun
,
L.
Huang
,
M.
Bockowski
,
S. J.
Rzoska
,
L. R.
Jensen
, and
M. M.
Smedskjaer
, “
Deformation and cracking behavior of La2O3-doped oxide glasses with high Poisson’s ratio
,”
J. Non-Cryst. Solids
494
,
86
(
2018
).
17.
M. B.
Østergaard
,
S. R.
Hansen
,
K.
Januchta
,
T.
To
,
S. J.
Rzoska
,
M.
Bockowski
,
M.
Bauchy
, and
M. M.
Smedskjaer
, “
Revisiting the dependence of Poisson’s ratio on liquid fragility and atomic packing density in oxide glasses
,”
Materials
12
,
2439
(
2019
).
18.
M.
Kodama
and
S.
Kojima
, “
Velocity of sound in and elastic properties of alkali metal borate glasses
,”
Phys. Chem. Glas. J. Glas. Sci. Technol. Part B
55
,
1
(
2014
).
19.
A.
Makishima
and
J. D.
Mackenzie
, “
Calculation of bulk modulus, shear modulus, and Poisson’s ratio of glass
,”
J. Non-Cryst. Solids
17
,
147
(
1975
).
20.
J.-P.
Poirier
,
Introduction to the Physics of the Earth’s Interior
(
Cambridge University Press
,
2000
).
21.
T.
To
,
F.
Célarié
,
C.
Roux-Langlois
,
A.
Bazin
,
Y.
Gueguen
,
H.
Orain
,
M.
Le Fur
,
V.
Burgaud
, and
T.
Rouxel
, “
Fracture toughness, fracture energy and slow crack growth of glass as investigated by the Single-Edge Precracked Beam (SEPB) and Chevron-Notched Beam (CNB) methods
,”
Acta Mater.
146
,
1
(
2018
).
22.
S. P.
Timoshenko
and
S.
Woinowsky-Krieger
,
Theory of Plate and Shells
(
McGraw-Hill
,
New York
,
1959
).
23.
S.
Sakka
,
H.
Kozuka
,
K.
Fukumi
, and
F.
Miyaji
, “
Structures of gallate, aluminate and titanate glasses
,”
J. Non-Cryst. Solids
123
,
176
(
1990
).
24.
D.
Sun
,
Y.
Gao
,
J.
Xue
, and
J.
Zhao
, “
Matching vacancy formation energy and defect levels with the density of amorphous Ga2O3
,”
J. Mater. Sci.
55
,
9343
(
2020
).
25.
D. R.
Lide
,
CRC Handbook of Chemistry and Physics
(
CRC Press
,
2004
), Vol. 85.
26.
Y.
Guo
and
J.
Robertson
, “
Comparison of oxygen vacancy defects in crystalline and amorphous Ta2O5
,”
Microelectron. Eng.
147
,
254
(
2015
).
27.
T.
Rouxel
, “
Fracture surface energy and toughness of inorganic glasses
,”
Scr. Mater.
137
,
109
(
2017
).
28.
T.
Rouxel
,
J.-I.
Jang
, and
U.
Ramamurty
, “
Indentation of glasses
,”
Prog. Mater. Sci.
121
,
100834
(
2021
).
29.
Y.-R.
Luo
,
Handbook of Bond Dissociation Energies in Organic Compounds
(
CRC Press
,
Boca Raton
,
2002
).
30.
K.
Januchta
,
R. E.
Youngman
,
L. R.
Jensen
, and
M. M.
Smedskjaer
, “
Mechanical property optimization of a zinc borate glass by lanthanum doping
,”
J. Non-Cryst. Solids
520
,
119461
(
2019
).
31.
G. R.
Irwin
, “
Analysis of stresses and strains near the end of a crack traversing a plate
,”
J. Appl. Mech.
24
,
361
(
1957
).
32.
T.
To
,
L. R.
Jensen
, and
M. M.
Smedskjaer
, “
On the relation between fracture toughness and crack resistance in oxide glasses
,”
J. Non-Cryst. Solids
534
,
119946
(
2020
).
33.
K. V.
Tian
,
B.
Yang
,
Y.
Yue
,
D. T.
Bowron
,
J.
Mayers
,
R. S.
Donnan
,
C.
Dobó-Nagy
,
J. W.
Nicholson
,
D.-C.
Fang
,
A. L.
Greer
,
G. A.
Chass
,
G. N.
Greaves
 et al, “
Atomic and vibrational origins of mechanical toughness in bioactive cement during setting
,”
Nat. Commun.
6
,
8631
(
2015
).
34.
K.
Januchta
,
T.
To
,
M. S.
Bødker
,
T.
Rouxel
, and
M. M.
Smedskjaer
, “
Elasticity, hardness, and fracture toughness of sodium aluminoborosilicate glasses
,”
J. Am. Ceram. Soc.
102
,
4520
(
2019
).
35.
T.
To
,
S. S.
Sørensen
,
M.
Stepniewska
,
A.
Qiao
,
L. R.
Jensen
,
M.
Bauchy
,
Y.
Yue
, and
M. M.
Smedskjaer
, “
Fracture toughness of a metal–organic framework glass
,”
Nat. Commun.
11
,
2593
(
2020
).
36.
T.
To
,
F.
Célarié
,
Y.
Gueguen
,
N. G.
Brou
,
C.
Lim
,
R.
Horm
,
V.
Burgaud
,
M.
Le Fur
,
J.
Chollet
,
H.
Orain
, and
T.
Rouxel
, “
Environment dependence of KIc of glass
,”
J. Non-Cryst. Solids
566
,
120873
(
2021
).
37.
T.
To
,
C.
Stabler
,
E.
Ionescu
,
R.
Riedel
,
F.
Célarié
, and
T.
Rouxel
, “
Elastic properties and fracture toughness of SiOC-based glass-ceramic nanocomposites
,”
J. Am. Ceram. Soc.
103
,
491
(
2020
).
38.
D.
Richard
,
E.
Lerner
, and
E.
Bouchbinder
, “
Brittle to ductile transitions in glasses: Roles of soft defects and loading geometry
,”
MRS Bull.
46
,
902
(
2021
).

Supplementary Material

You do not currently have access to this content.