Detailed experimental and computational information on the response of lithium surfaces to irradiation by slow hydrogenic particles (ions, atoms, molecules) is sparse and mainly speculative. In this work, we present a computational study of the reflection and retention of deuterium (D) atoms at crystalline and amorphous lithium surfaces at 300 and 500 K, where the D atoms have an impact energy in the range of 0.025–5 eV and incident angles of 0° (perpendicular incidence) or 85° (near-grazing incidence). Classical molecular dynamics simulations are performed with the reactive bond-order force field (ReaxFF) potentials. This study provides quantitative information on the deuterium sticking probability and recycling coefficient for lithium surfaces. Our results support the ongoing work at the Lithium Tokamak eXperiment-β fusion experiment as well as relevant experiments in the laboratory setting.

1.
R.
Majeski
 et al., “
Compatibility of lithium plasma-facing surfaces with high edge temperatures in the Lithium Tokamak eXperiment
,”
Phys. Plasmas
24
,
056110
(
2017
).
2.
M.
Ono
,
M. A.
Jaworski
,
R.
Kaita
 et al., “
Recent progress in the NSTX/NSTX-U lithium program and prospects for reactor-relevant liquid-lithium based divertor development
,”
Nucl. Fusion
53
,
113030
(
2013
).
3.
G. Z.
Zuo
,
J. S.
Hu
,
R.
Maingi
 et al., “
Results from an improved flowing liquid lithium limiter with increased flow uniformity in high power plasmas in EAST
,”
Nucl. Fusion
59
,
016009
(
2019
).
4.
R.
Rizkallah
,
D.
Andruczyk
,
A.
Shone
 et al., “
Latest results from the Hybrid Illinois Device for Research and Applications (HIDRA)
,”
IEEE Trans. Plasma Sci.
46
(
7
),
2685
(
2018
).
5.
A.
Rohollahi
,
S.
Elgriw
,
A.
Mossman
 et al., “
Effects of lithium coating of the chamber wall on the STOR-M Tokamak discharges
,”
Nucl. Fusion
59
,
076023
(
2019
).
6.
D. P.
Boyle
,
R.
Majeski
,
J. C.
Schmitt
,
C.
Hansen
,
R.
Kaita
,
S.
Kubota
, and
M.
Lucia
, “
Observation of flat electron temperature profiles in the Lithium Tokamak eXperiment
,”
Phys. Rev. Lett.
119
,
015001
(
2017
).
7.
R.
Kaita
,
M.
Lucia
,
J. P.
Allain
 et al., “
Hydrogen retention in lithium on metallic walls from ‘in vacuo’ analysis in LTX and implications for high-Z plasma-facing components in NSTX-U
,”
Fusion Eng. Des.
117
,
135
139
(
2017
).
8.
J. C.
Schmitt
,
R. E.
Bell
,
D. P.
Boyle
 et al., “
High performance discharges in the Lithium Tokamak eXperiment with liquid lithium walls
,”
Phys. Plasmas
22
,
056112
(
2015
).
9.
R.
Majeski
 et al., “
Particle control and plasma performance in the Lithium Tokamak eXperiment
,”
Phys. Plasmas
20
,
056103
(
2013
).
10.
L.
Buzi
,
Y.
Yang
,
F. J.
Domínguez-Gutiérrez
 et al., “
Hydrogen retention in lithium and lithium oxide films
,”
J. Nucl. Mater.
502
,
161
(
2018
).
11.
A.
Maan
,
E. T.
Ostrowski
,
R.
Kaita
 et al., “
Plasma facing component characterization and correlation with plasma conditions in Lithium Tokamak eXperiment-β
,”
IEEE Trans. Plasma Sci.
48
,
1463
1467
(
2020
).
12.
M. J.
Baldwin
,
R. J.
Doerner
,
S. C.
Luckhardt
 et al., “
Deuterium retention in liquid lithium
,”
Nucl. Fusion
42
,
1318
1323
(
2002
).
13.
P. S.
Krstic
,
E. T.
Ostrowski
,
F. J.
Domínguez-Gutierrez
 et al., “
Sputtering and reflection processes from amorphous lithium surfaces by low-energy impacts of H and D atoms and D2 molecules
,”
J. Nucl. Mater.
568
, 153848 (2022).
14.
N.
Yoneda
,
T.
Shikama
,
F.
Scotti
 et al., “
Spectroscopic measurement of increases in hydrogen molecular rotational temperature with plasma-facing surface temperature and due to collisional-radiative processes in tokamaks
” (unpublished) (
2022
).
15.
J.
Engbæk
,
G.
Nielsen
,
J. H.
Nielsen
, and
I.
Chorkendorff
, “
Growth and decomposition of lithium and lithium hydride on nickel
,”
Surf. Sci.
600
,
1468
(
2006
).
16.
A.
Balakrishnan
,
V.
Smith
, and
B.
Stoicheff
, “
Dissociation energy of the hydrogen molecule
,”
Phys. Rev. Lett.
68
,
2149
(
1992
).
17.
H. S.
Bosch
and
G. M.
Hale
, “
Improved formulas for fusion cross-sections and thermal reactivities
,”
Nucl. Fusion
32
,
611
(
1992
).
18.
A.
Bukoski
,
D.
Blumling
, and
I.
Harrison
, “
Microcanonical unimolecular rate theory at surfaces. I. Dissociative chemisorption of methane on Pt (111)
,”
J. Chem. Phys.
118
,
843
871
(
2003
).
19.
M. R.
Voss
,
H.
Busse
, and
B. E.
Koel
, “
Adsorption of thermal D atoms on Sn/Pt (111) surface alloys
,”
Surf. Sci.
414
,
330
(
1998
).
20.
K.
Tichmann
,
U.
Von Toussaint
, and
W.
Jacob
, “
Fit formulas for the angular dependence of the sticking coefficient of energetic hydrocarbon molecules
,”
J. Nucl. Mater.
415
,
S196
(
2011
).
21.
H.
Busse
,
M. R.
Voss
,
D.
Jerdev
,
B. E.
Koel
, and
M. T.
Pa
, “
Adsorption and reaction of gaseous H (D) atoms with D (H) adatoms on Pt (1 1 1) and Sn/Pt (1 1 1) surface alloys
,”
Surf. Sci.
490
,
133
(
2001
).
22.
M.
Chen
 et al., “
Effect of temperature on the desorption of lithium from molybdenum (110) surfaces: Implications for fusion reactor first wall materials
,”
J. Phys. Chem. B
120
,
6110
(
2016
).
23.
W.
Ou
,
R. S.
Al
,
J. W. M.
Vernimmen
 et al., “
Deuterium retention in Sn-filled samples exposed to fusion-relevant flux plasmas
,”
Nucl. Fusion
60
,
026008
(
2020
).
24.
A.
Manhard
,
T.
Schwarz-Selinger
,
M.
Balden
 et al., “
Deuterium retention in solid and liquid tin after low-temperature plasma exposure
,”
Nucl. Fusion
60
,
106007
(
2020
).
25.
A.
Politanoa
,
G.
Chiarelloa
,
G.
Benedekc
 et al., “
Vibrational spectroscopy and theory of alkali metal adsorption and co-adsorption on single-crystal surfaces
,”
Surf. Sci. Rep.
68
,
305
(
2013
).
26.
A. C. T.
van Duin
,
S.
Dasgupta
,
F.
Lorant
 et al.,
J. Phys. Chem. A
105
,
9396
(
2001
).
27.
S.
Plimton
, “
Fast parallel algorithms for short-range molecular dynamics
,”
J. Comput. Phys.
117
,
1
(
1995
).
28.
L.
Pauling
, “
The nature of the chemical bond. IV. The energy of single bonds and the relative electronegativity of atoms
,”
J. Am. Chem. Soc.
54
(
9
),
3570
3582
(
1932
).
29.
L. C.
Allen
, “
Electronegativity is the average one-electron energy of the valence-shell electrons in ground-state free atoms
,”
J. Am. Chem. Soc.
111
,
9003
(
1989
).
30.
P. S.
Krstic
,
J. P.
Allain
,
A.
Allouche
 et al., “
Dynamics of deuterium retention and sputtering of Li–C–O surfaces
,”
Fusion Eng. Des.
87
,
1732
(
2012
).
31.
P. S.
Krstic
 et al, “
Deuterium uptake in magnetic-fusion devices with lithium-conditioned carbon walls
,”
Phys. Rev. Lett.
110
,
105001
(
2013
).
32.
F. J.
Domínguez-Gutiérrez
,
P. S.
Krstic
,
J. P.
Allain
,
F.
Bedoya
,
M. M.
Islam
,
R.
Lotfi
, and
A. C. T.
van Duin
, “
Deuterium uptake and sputtering of simultaneous lithiated, boronized, and oxidized carbon surfaces irradiated by low-energy deuterium
,”
J. Appl. Phys.
123
,
195901
(
2018
).
33.
P. S.
Krstic
,
L.
Han
,
S.
Irle
, and
H.
Nakai
, “
Simulations of the synthesis of boron-nitride nanostructures in a hot, high pressure gas volume
,”
Chem. Sci.
9
,
3803
(
2018
) and references therein.
34.
D.
Gaissmaier
,
D.
Fantauzzi
, and
T.
Jacob
, “
First principles studies of self-diffusion processes on metallic lithium surfaces
,”
J. Chem. Phys.
150
,
041723
(
2019
).
35.
D.
Farias
and
K.-H.
Rieder
, “
Atomic beam diffraction from solid surfaces
,”
Rep. Prog. Phys.
61
,
1575
(
1998
).
36.
K.
Jacobi
,
M.
Gruyters
, and
P.
Geng
, “
Hydrogenation of Si(113) surfaces by photoelectrochemical treatment
,”
Phys. Rev. B
51
,
5437
(
1995
).
37.
G.
Liu
,
S. B.
Liu
,
B.
Xu
 et al., “
Multiple Dirac points and hydrogenation-induced magnetism of germanene layer on Al (111) surface
,”
J. Phys. Chem. Lett.
6
,
4936
(
2015
).
38.
A.
Yong
,
S.
Eng
,
Z.
Sofer
,
Š.
Huber
 et al., “
Hydrogenated graphenes by Birch reduction: Influence of electron and proton sources on hydrogenation efficiency, magnetism, and electrochemistry
,”
Chem. Eur. J.
21
,
16828
(
2015
).
39.
H. L.
Poh
,
F.
Sanek
,
Z.
Sofer
 et al., “
High-pressure hydrogenation of graphene: Towards graphene
,”
Nanoscale
4
,
7006
(
2012
).
40.
G.
He
,
Q.
Wang
,
H. K.
Yu
 et al., “
Water-induced hydrogenation of graphene/metal interfaces at room temperature: Insights on water intercalation and identification of sites for water splitting
,”
Nano Res.
12
,
3010
(
2019
).

Supplementary Material

You do not currently have access to this content.