Experiments were conducted at the University of Illinois at Urbana Champaign Electric Propulsion Laboratory to study the ion-induced secondary charge emission from surfaces bombarded by an [Emim][BF4] electrospray plume. The surfaces were unpolished and had oxide and hydrocarbon layers typical of as-received materials used in electrospray experiments. The effect of changing the bias from −85 to +85 V on the target collecting current from the electrospray plume was measured. These data are used to calculate the yield of positive and negative charged species emission from the target due to bombarding cations and anions. The yields of positive charges per incident cation (γcation+), negative charges per incident cation (γcation), positive charges per incident anion (γanion+), and negative charges per incident anion (γanion) are measured for eight different industrial materials commonly used in electrospray diagnostics or thruster and spacecraft construction. These yields range from 0 to 1.3 charges per incident ion over a range of emitter voltages from 1.5 to 2.9 kV and largely display linearly increasing trends with increasing emitter voltage. Over this emitter voltage range, γcation+ ranges from 0 to 0.55, γcation ranges from 0 to 0.75, γanion+ ranges from 0 to 0.4, and γanion ranges from 0.3 to 1.3. The data show for the first time positive and negative charges being emitted due to both cation and anion bombardment and suggest that secondary ions sputtered from the surface are important to the secondary charge emission behavior in electrospray plumes.

1.
D.
Krejci
and
P.
Lozano
, “
Scalable ionic liquid electrospray thrusters for nanosatellites
,”
Adv. Astronaut. Sci.
157
,
801
810
(
2016
).
2.
C.
Ma
and
C. N.
Ryan
, “
The design and characterization of a porous-emitter electrospray thruster (PET-100) for interplanetary CubeSats
,” in
Proceedings of 7th Interplanetary CubeSat Workshop
(Interplanetary CubeSat Workshop,
2018
), pp.
1
9
.
3.
M. R.
Natisin
,
H. L.
Zamora
,
W. A.
McGehee
 et al., “
Fabrication and characterization of a fully conventionally machined, high-performance porous-media electrospray thruster
,”
J. Micromech. Microeng.
30
(
11
),
115021
(
2020
).
4.
F.
Saiz
and
M.
Gamero-Castaño
, “
Molecular dynamics of nanodroplet impact: The effect of the projectile’s molecular mass on sputtering
,”
AIP Adv.
6
(
6
),
065319
(
2016
).
5.
C.
Perez-Martinez
,
S.
Guilet
,
N.
Gogneau
,
P.
Jegou
,
J.
Gierak
, and
P.
Lozano
, “
Development of ion sources from ionic liquids for microfabrication
,”
J. Vac. Sci. Technol. B
28
(
3
),
L25
L27
(
2010
).
6.
E.
Villanueva-Bonay
and
M.
Gamero-Castaño
, “
Molecular dynamics of nanodroplet impact: The effect of particle resolution in the projectile model
,”
AIP Adv.
9
(
8
),
085204
(
2019
).
7.
F.
Mier-Hicks
and
P. C.
Lozano
, “
Spacecraft-charging characteristics induced by the operation of electrospray thrusters
,”
J. Propul. Power
33
(
2
),
456
467
(
2017
).
8.
T. M.
Coles
,
T. P.
Fedkiwf
,
P. C.
Lozano
, “
Investigating ion fragmentation in electrospray thruster beams
,” in
48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit 2012
(AIAA,
2012
).
9.
C
.
Ma
and
C.
Ryan
, “
Plume characterization of a porous electrospray thruster
,” in
36th International Electric Propulsion Conference
(IEPC,
2019
), pp.
1
19
.
10.
N. M.
Uchizono
,
A. L.
Collins
,
C.
Marrese-Reading
,
S. M.
Arestie
,
J. K.
Ziemer
, and
R. E.
Wirz
, “
The role of secondary species emission in vacuum facility effects for electrospray thrusters
,”
J. Appl. Phys.
130
(
14
),
143301
(
2021
).
11.
J. M.
Magnusson
,
A. L.
Collins
, and
R. E.
Wirz
, “
Polyatomic ion-induced electron emission (IIEE) in electrospray thrusters
,”
Aerospace
7
(
11
),
153
(
2020
).
12.
P.
Lozano
and
M.
Martínez-Sánchez
, “
Ionic liquid ion sources: Characterization of externally wetted emitters
,”
J. Colloid Interface Sci.
282
(
2
),
415
421
(
2005
).
13.
P.
Lozano
and
M.
Martínez-Sánchez
, “
On the dynamic response of externally wetted ionic liquid ion sources
,”
J. Phys. D: Appl. Phys.
38
(
14
),
2371
2377
(
2005
).
14.
J. C.
Tucek
and
R. L.
Champion
, “
On the dynamics of secondary-electron and anion emission from an Al/O surface
,”
Surf. Sci.
382
(
1-3
),
137
146
(
1997
).
15.
S.
Klingner
,
F.
Voigts
,
W.
Viöl
, and
W.
Maus-Friedrichs
, “
Analysis of plasma degreased aluminium foil with XPS
,”
Surf. Eng.
29
(
5
),
396
401
(
2013
).
16.
Y.
Zhang
,
Z. Z.
Fang
,
L.
Xu
 et al., “
Mitigation of the surface oxidation of titanium by hydrogen
,”
J. Phys. Chem. C
122
(
36
),
20691
20700
(
2018
).
17.
D.
Delpa
and
S.
Mahieu
,
Reactive Sputter Deposition
(
Springer
,
Berlin
,
2008
), Vol. 88.
18.
T. R.
Lundquist
, “
Energy distributions of sputtered copper neutrals and ions
,”
J. Vac. Sci. Technol.
15
,
684
687
(
1978
).
19.
E. V.
Alonso
,
R. A.
Baragiola
,
J.
Ferrn
,
M. M.
Jakas
, and
A.
Oliva-Florio
, “
Z1 dependence of ion-induced electron emission from aluminum
,”
Phys. Rev. B
22
(
1
),
80
87
(
1980
).
20.
B.
Svensson
,
G.
Holmén
, and
A.
Burén
, “
Angular dependence of the ion-induced secondary-electron yield from solids
,”
Phys. Rev. B
24
(
7
),
3749
3755
(
1981
).
21.
J.
Ferron
,
E. V.
Alonso
,
R. A.
Baragiola
, and
A.
Oliva-Florio
, “
Electron emission from molybdenum under ion bombardment
,”
J. Phys. D: Appl. Phys.
14
,
1707
(
1981
).
22.
J.
Ferron
,
E. V.
Alonso
,
R. A.
Baragiola
, and
A.
Oliva-Florio
, “
Dependence of ion-electron emission from clean metals on the incidence angle of the projectile
,”
Phys. Rev. B
24
(
8
),
4412
4419
(
1981
).
23.
K.
Nishimura
,
T.
Itotani
, and
K.
Ohya
, “
Influence of surface roughness on secondary electron emission and electron backscattering from metal surface
,”
Jpn. J. Appl. Phys.
33
(
8R
),
4727
4734
(
1994
).
24.
M.
Cao
,
N.
Zhang
,
T.-C.
Hu
,
F.
Wang
, and
W.-Z.
Cui
, “
Secondary electron emission from rough metal surfaces: A multi-generation model
,”
J. Phys. D: Appl. Phys.
48
(
5
),
055501
(
2015
).
25.
G.
Wilson
and
J. R.
Dennison
, in
American Physical Society Four Corners Meeting
(American Physical Society,
Salt Lake City, UT
,
2018
). https://digitalcommons.usu.edu/cgi/viewcontent.cgi?article=1188&context=mp_presentations.
26.
A.
Marcak
,
C.
Corbella
,
T.
de los Arcos
, and
A.
von Keudell
, “
Note: Ion-induced secondary electron emission from oxidized metal surfaces measured in a particle beam reactor
,”
Rev. Sci. Instrum.
86
(
10
),
106102
(
2015
).
27.
R.
Borrajo-Pelaez
and
M.
Gamero-Castaño
, “
The effect of the molecular mass on the sputtering by electrosprayed nanodroplets
,”
Appl. Surf. Sci.
344
,
163
170
(
2015
).
28.
J.
Axelsson
,
C. T.
Reimann
, and
B. U. R.
Sundqvist
, “
Secondary electron emission from surfaces impacted by multiply-charged polyatomic ions
,”
Nucl. Instrum. Methods Phys. Res., Sect. B
88
,
131
137
(
1994
).
29.
K.
Wittmaack
, “
Analysis of quantitative secondary ion mass spectrometry
,”
Nucl. Instrum. Methods
168
,
343
356
(
1980
).
30.
Z.
Jurela
, “
Energy distribution of secondary ions from 15 polycrystalline targets
,”
Radiat. Eff.
19
(
3
),
175
180
(
1973
).
31.
W. H.
Gries
, “
A formula for the secondary Ion field fraction emitted through and energy window
,”
Int. J. Mass Spectrom. Ion Phys.
17
,
77
88
(
1975
).
32.
C.
Ma
, “
Design and characterization of electrospray thrusters with high emission density
,”
Doctoral thesis
(University of Southampton
,
2020
).
You do not currently have access to this content.