Reflectron-type time-of-flight mass spectrometry was applied to the time-resolved component analysis of deep oscillation magnetron sputtering (DOMS), which has been developed as a technique of modulated pulsed magnetron sputtering. In the present study, the DOMS of a Ti target was performed under an Ar gas atmosphere by using a DOMS-specific control waveform consisting of 25 current and/or power pulses. The time evolution of the formation of ionized species (Ar+, Ar2+, Ti+, and Ti2+) after the application of the first discharge pulse was observed at the position corresponding to the deposition region. This study revealed that the plasma build-up process from non-metallic plasma to metallic plasma takes approximately two micropulses (around 100 μs from ignition) in DOMS discharge. In addition, we have found the possibility of studying sputtering processes, such as the rarefaction, and refilling processes of Ar as a function of pulse number through DOMS research.

1.
J. T.
Gudmundsson
,
N.
Brenning
,
D.
Lundin
, and
U.
Helmersson
,
J. Vac. Sci. Technol. A
30
,
030801
(
2012
).
2.
U.
Helmersson
,
M.
Lattemann
,
J.
Bohlmark
,
A. P.
Ehiasarian
, and
J. T.
Gudmundsson
,
Thin Solid Films
513
,
1
(
2006
).
3.
A.
Anders
,
J. Appl. Phys.
121
,
171101
(
2017
).
4.
J.
Lin
,
J. J.
Moore
,
W. D.
Sproul
,
B.
Mishra
, and
Z.
Wu
,
Thin Solid Films
518
,
1566
(
2009
).
5.
J.
Lin
,
J. J.
Moore
,
W. D.
Sproul
,
B.
Mishra
,
J. A.
Rees
,
Z.
Wu
, R. Chistyakov, and B. Abraham,
Surf. Coat. Technol.
203
,
3676
(
2009
).
6.
M.
Hála
,
J.
Čapek
,
O.
Zabeida
,
J. E.
Klemberg-Sapieha
, and
L. I.
Martinu
,
Surf. Coat. Technol.
206
,
4186
(
2012
).
7.
J.
Lin
,
B.
Wang
,
W. D.
Sproul
,
Y.
Ou
, and
I.
Dahan
,
J. Phys. D: Appl. Phys.
46
,
084008
(
2013
).
8.
J.
Lin
,
J.
W
,
D.
Sproul
,
R.
Wei
, and
R.
Chistyakov
,
Surf. Coat. Technol.
258
,
1212
(
2014
).
9.
F.
Ferreira
,
R.
Serra
,
J. C.
Oliveira
, and
A.
Cavaleiro
,
Surf. Coat. Technol.
258
,
249
(
2014
).
10.
J.
Lin
and
W. D.
Sproul
,
Surf. Coat. Technol.
276
,
70
(
2015
).
11.
F.
Ferreira
,
A.
Aijaz
,
T.
Kubart
,
A.
Cavaleiro
, and
J.
Oliveira
,
Surf. Coat. Technol.
336
,
92
(
2018
).
12.
R.
Franz
,
C.
Clavero
,
R.
Bolat
,
R.
Mendelsberg
, and
A.
Anders
,
Plasma Sources Sci. Technol.
23
,
035001
(
2014
).
13.
K.
Tsukamoto
,
T.
Tamura
,
H.
Matsusaki
,
M.
Tona
,
H.
Yamamoto
,
Y.
Nakagomi
,
H.
Nishida
,
Y.
Hirai
,
N.
Nishimiya
,
M.
Sanekata
,
K.
Ohshimo
,
K.
Koyasu
, and
F.
Misaizu
,
Jpn. J. Appl. Phys.
59
,
SHHB05
(
2020
).
14.
W.
Hang
,
P.
Yang
,
X.
Wang
,
C.
Yang
,
Y.
Su
, and
B.
Huang
,
Rapid Commun. Mass Spectrom.
8
,
590
(
1994
).
15.
W. W.
Harrison
and
W.
Hang
,
J. Anal. At. Spectrom.
11
,
835
(
1996
).
16.
R. E.
Steiner
,
C. L.
Lewis
, and
F. L.
King
,
Anal. Chem.
69
,
1715
(
1997
).
17.
M. R.
DeJesus
,
G.
Gu
,
F. L.
King
,
J. H.
Barnes
,
I. V.
and C
, and
L.
Lewis
,
J. Anal. At. Spectrom.
26
,
2206
(
2011
).
18.
J.
Musil
,
J.
Leština
,
J.
Vlček
, and
T.
Tölg
,
J. Vac. Sci. Technol. A
19
,
420
(
2001
).
19.
J. T.
Gudmundsson
,
J.
Alami
, and
U.
Helmersson
,
Surf. Coat. Technol.
161
,
249
(
2002
).
20.
J. T.
Gudmundsson
,
D.
Lundin
,
G. D.
Stancu
,
N.
Brenning
, and
T. M.
Minea
,
Phys. Plasmas
22
,
113508
(
2015
).
21.
W.
Breilmann
,
C.
Maszl
,
J.
Benedikt
, and
A.
von Keudell
,
J. Phys. D: Appl. Phys.
46
,
485204
(
2013
).
22.
A.
Mishra
,
P. J.
Kelly
, and
J. W.
Bradley
,
Plasma Sources Sci. Technol.
19
,
045014
(
2010
).
23.
W. C.
Wiley
and
I. H.
McLaren
,
Rev. Sci. Instrum.
26
,
1150
(
1955
).
24.
E.
Kuffel
and
W. S.
Zaengl
,
High Voltage Engineering—Fundamentals
(
Pergamon Press
,
Oxford
,
1984
), Chap. 5.
25.
G. Y.
Yushkov
and
A.
Anders
,
IEEE Trans. Plasma Sci.
38
,
3028
(
2010
).
26.
M.
Sanekata
,
H.
Nishida
,
T.
Watabe
,
Y.
Nakagomi
,
Y.
Hirai
,
N.
Nishimiya
,
M.
Tona
,
H.
Yamamoto
,
N.
Hirata
,
K.
Tsukamoto
,
K.
Ohshimo
,
F.
Misaizu
, and
K.
Fuke
,
Plasma
4
,
239
(
2021
).
27.
M.
Sanekata
,
H.
Nishida
,
Y.
Nakagomi
,
Y.
Hirai
,
N.
Nishimiya
,
M.
Tona
,
N.
Hirata
,
H.
Yamamoto
,
K.
Tsukamoto
,
K.
Ohshimo
,
F.
Misaizu
, and
K.
Fuke
,
Plamsa
4
,
269
(
2021
).
28.
M.
Palmuccci
,
N.
Britun
,
S.
Konstantinidis
, and
R.
Snyders
,
J. Appl. Phys.
114
,
113302
(
2013
).
29.
N.
Britun
,
M.
Palmuccci
,
S.
Konstantinidis
, and
R.
Snyders
,
J. Appl. Phys.
117
,
163302
(
2015
).
30.
N.
Britun
,
M.
Palmuccci
,
S.
Konstantinidis
, and
R.
Snyders
,
J. Appl. Phys.
117
,
163303
(
2015
).
31.
M.
Palmuccci
,
N.
Britun
,
T.
Silva
,
R.
Snyders
, and
S.
Knstantinidis
,
J. Phys. D: Appl. Phys.
46
,
215201
(
2013
).
32.
J.
Čapek
,
M.
Hála
,
O.
Zabeida
,
J. E.
Klemberg-Sapieha
, and
L.
Martinu
,
J. Phys. D: Appl. Phys.
46
,
205205
(
2013
).
33.
B. C.
Zheng
,
D.
Meng
,
H. L.
Che
, and
M. K.
Lei
,
J. Appl. Phys.
117
,
203302
(
2015
).
34.
D. J.
Christie
,
J. Vac. Sci. Technol. A
23
,
330
(
2005
).
35.
A.
Anders
,
J.
Čapek
,
M.
Hála
, and
L.
Martinu
,
J. Phys. D: Appl. Phys.
45
,
012003
(
2012
).
36.
N.
Brenning
,
J. T.
Gudmundsson
,
M. A.
Raadu
,
T. J.
Petty
,
T.
Minea
, and
D.
Lundin
,
Plasma Sources Sci. Technol.
26
,
125003
(
2017
).
37.
C.
Maszl
,
W.
Breilmann
,
J.
Benedikt
, and
A.
von Keudell
,
J. Phys. D: Appl. Phys.
47
,
224002
(
2014
).
38.
E.
Yokoyama
,
M.
Sanekata
,
N.
Nishimiya
,
M.
Tona
,
H.
Yamamoto
,
K.
Tsukamoto
,
K.
Fuke
,
K.
Ohshimo
, and
F.
Misaizu
, “
An optical emission spectroscopic study of deep oscillation magnetron sputtering of titanium
in Proceedings of ICRP-11/GEC 2022, Sendai, Japan, 3–7 October (submitted).
39.
P.
Sigmond
, in
Sputtering by Particle Bombardment
, edited by
R.
Behrisch
(
Springer
,
Berlin
,
1981
), Vol. I, p.
37
.
40.
M.
Mišina
,
L. R.
Shaginyan
,
M.
Maček
, and
P.
Panjan
,
Surf. Coat. Technol.
142–144
,
348
(
2001
).
41.
J.
Bohlmark
,
M.
Lattemann
,
J. T.
Gudmundsson
,
A. P.
Ehiasarian
,
Y.
Aranda Gonzalvo
,
N.
Brenning
, and
U.
Helmersson
,
Thin Solid Films
515
,
1522
(
2006
).
42.
K.
Bernátová
,
M.
Fekete
,
P.
Klein
,
J.
Hnilica
, and
P.
Vašina
,
Plasma Sources Sci. Technol.
29
,
055010
(
2020
).
43.
M.
Sanekata
,
K.
Tsukamoto
, and
F.
Misaizu
, “
Development of a plasma diagnostic method for high power pulsed magnetron sputtering using a reflectron-type time-of-flight mass spectrometer
,”
J. Mass Spectrom. Soc. Jpn.
70
,
30
(
2022
).
You do not currently have access to this content.