Accurate description of solubility and defect ionization energies in low dimensional nanostructures is critical for electronic applications of semiconductors with improved functionalities. Here, we present quantum confinement effect driven strategies for tuning defect level of hydrogen doping in the core region of rutile VO2(R) nanowires. The inverse dependence of a bandgap with a diameter (d0.48) confirms the presence of quantum confinement effect in nanowires. The hydrogen doping in both interstitial and substitution at the O site behaves as a deep donor in low diameter nanowires, where the effect of quantum confinement is significant. The position of a donor charge transition level becomes increasingly shallower with increased nanowire diameters. The ionization energies of hydrogen defects decrease for larger-diameter nanowires due to the dielectric screening effect increment. This indicates the possibility of achieving n-type dopability with large diameter VO2(R) nanowires. This study prescribes the strategies for optimizing doping and the defect level for extensive applications of highly correlated 1D nanostructured materials.

1.
Z.
Lin
,
B. R.
Carvalho
,
E.
Kahn
,
R.
Lv
,
R.
Rao
,
H.
Terrones
,
M. A.
Pimenta
, and
M.
Terrones
, “
Defect engineering of two-dimensional transition metal dichalcogenides
,”
2D Mater.
3
,
022002
(
2016
).
2.
K.
Zhu
,
S.
Wei
,
H.
Shou
,
F.
Shen
,
S.
Chen
,
P.
Zhang
,
C.
Wang
,
Y.
Cao
,
X.
Guo
,
M.
Luo
,
H.
Zhang
,
B.
Ye
,
X.
Wu
,
L.
He
, and
L.
Song
, “
Defect engineering on V2O3 cathode for long-cycling aqueous zinc metal batteries
,”
Nat. Commun.
12
,
6878
(
2021
).
3.
Y.
Zheng
,
T. J.
Slade
,
L.
Hu
,
X. Y.
Tan
,
Y.
Luo
,
Z.-Z.
Luo
,
J.
Xu
,
Q.
Yan
, and
M. G.
Kanatzidis
, “
Defect engineering in thermoelectric materials: What have we learned?
Chem. Soc. Rev.
50
,
9022
9054
(
2021
).
4.
T.
Schwarz
,
A.
Redinger
,
S.
Siebentritt
,
Z.
Peng
,
B.
Gault
,
D.
Raabe
, and
P.-P.
Choi
, “
Variable chemical decoration of extended defects in Cu-poor Cu2ZnSnSe4 thin films
,”
Phys. Rev. Mater.
3
,
035402
(
2019
).
5.
K.
Ueno
,
S.
Nakamura
,
H.
Shimotani
,
A.
Ohtomo
,
N.
Kimura
,
T.
Nojima
,
H.
Aoki
,
Y.
Iwasa
, and
M.
Kawasaki
, “
Electric-field-induced superconductivity in an insulator
,”
Nat. Mater.
7
,
855
858
(
2008
).
6.
G. Y.
Yonggang
,
X.
Zhang
, and
A.
Zunger
, “
Natural off-stoichiometry causes carrier doping in half-Heusler filled tetrahedral structures
,”
Phys. Rev. B
95
,
085201
(
2017
).
7.
L.
Yu
and
A.
Zunger
, “
A polarity-induced defect mechanism for conductivity and magnetism at polar–nonpolar oxide interfaces
,”
Nat. Commun.
5
,
5118
(
2014
).
8.
S.
Anand
,
C.
Wolverton
, and
G. J.
Snyder
, “
Thermodynamic guidelines for maximum solubility
,”
Chem. Mater.
34
,
1638
1648
(
2022
).
9.
A.
Zunger
and
O. I.
Malyi
, “
Understanding doping of quantum materials
,”
Chem. Rev.
121
,
3031
3060
(
2021
).
10.
D.
Wang
and
R.
Sundararaman
, “
Layer dependence of defect charge transition levels in two-dimensional materials
,”
Phys. Rev. B
101
,
054103
(
2020
).
11.
G.-J.
Zhu
,
Y.-G.
Xu
,
X.-G.
Gong
,
J.-H.
Yang
, and
B. I.
Yakobson
, “
Dimensionality-inhibited chemical doping in two-dimensional semiconductors: The phosphorene and MoS2 from charge-correction method
,”
Nano Lett.
21
,
6711
6717
(
2021
).
12.
A.
Singh
,
M.
Dey
, and
A. K.
Singh
, “
Origin of layer-dependent electrical conductivity of transition metal dichalcogenides
,”
Phys. Rev. B
105
,
165430
(
2022
).
13.
A.
Singh
,
A.
Manjanath
, and
A. K.
Singh
, “
Engineering defect transition-levels through the van der Waals heterostructure
,”
J. Phys. Chem. C
122
,
24475
24480
(
2018
).
14.
X.
Yan
,
P.
Li
,
S.-H.
Wei
, and
B.
Huang
, “
Universal theory and basic rules of strain-dependent doping behaviors in semiconductors
,”
Chin. Phys. Lett.
38
,
087103
(
2021
).
15.
R.
Yan
,
D.
Gargas
, and
P.
Yang
, “
Nanowire photonics
,”
Nat. Photonics
3
,
569
576
(
2009
).
16.
N. P.
Dasgupta
,
J.
Sun
,
C.
Liu
,
S.
Brittman
,
S. C.
Andrews
,
J.
Lim
,
H.
Gao
,
R.
Yan
, and
P.
Yang
, “
25th anniversary article: Semiconductor nanowires–synthesis, characterization, and applications
,”
Adv. Mater.
26
,
2137
2184
(
2014
).
17.
E.
Barrigón
,
M.
Heurlin
,
Z.
Bi
,
B.
Monemar
, and
L.
Samuelson
, “
Synthesis and applications of III–V nanowires
,”
Chem. Rev.
119
,
9170
9220
(
2019
).
18.
N.
Goktas
,
P.
Wilson
,
A.
Ghukasyan
,
D.
Wagner
,
S.
McNamee
, and
R.
LaPierre
, “
Nanowires for energy: A review
,”
Appl. Phys. Rev.
5
,
041305
(
2018
).
19.
E.
Gordanian
,
S.
Jalali-Asadabadi
,
I.
Ahmad
,
S.
Rahimi
, and
M.
Yazdani-Kachoei
, “
Effects of dangling bonds and diameter on the electronic and optical properties of InAs nanowires
,”
RSC Adv.
5
,
23320
23325
(
2015
).
20.
M.
Legesse
,
G.
Fagas
, and
M.
Nolan
, “
Modifying the band gap and optical properties of germanium nanowires by surface termination
,”
Appl. Surf. Sci.
396
,
1155
1163
(
2017
).
21.
S.
Chen
,
Z.
Wang
,
H.
Ren
,
Y.
Chen
,
W.
Yan
,
C.
Wang
,
B.
Li
,
J.
Jiang
, and
C.
Zou
, “
Gate-controlled VO2 phase transition for high-performance smart windows
,”
Sci. Adv.
5
,
eaav6815
(
2019
).
22.
T.-C.
Chang
,
X.
Cao
,
S.-H.
Bao
,
S.-D.
Ji
,
H.-J.
Luo
, and
P.
Jin
, “
Review on thermochromic vanadium dioxide based smart coatings: From lab to commercial application
,”
Adv. Manuf.
6
,
1
19
(
2018
).
23.
T.
Chang
,
X.
Cao
,
Y.
Long
,
H.
Luo
, and
P.
Jin
, “
How to properly evaluate and compare the thermochromic performance of VO2-based smart coatings
,”
J. Mater. Chem. A
7
,
24164
24172
(
2019
).
24.
Y.
Naoi
and
J. J.
Amano
, “
Optimization of VO2 nanowire polymer composite thermochromic films by optical simulation
,”
J. Appl. Phys.
120
,
235301
(
2016
).
25.
C.
Wu
,
F.
Feng
, and
Y.
Xie
, “
Design of vanadium oxide structures with controllable electrical properties for energy applications
,”
Chem. Soc. Rev.
42
,
5157
5183
(
2013
).
26.
J.
Wei
,
H.
Ji
,
W.
Guo
,
A. H.
Nevidomskyy
, and
D.
Natelson
, “
Hydrogen stabilization of metallic vanadium dioxide in single-crystal nanobeams
,”
Nat. Nanotechnol.
7
,
357
362
(
2012
).
27.
J.
Zhang
,
H.
He
,
Y.
Xie
, and
B.
Pan
, “
Theoretical study on the tungsten-induced reduction of transition temperature and the degradation of optical properties for VO2
,”
J. Chem. Phys.
138
,
114705
(
2013
).
28.
R.
Chen
,
L.
Miao
,
C.
Liu
,
J.
Zhou
,
H.
Cheng
,
T.
Asaka
,
Y.
Iwamoto
, and
S.
Tanemura
, “
Shape-controlled synthesis and influence of W doping and oxygen nonstoichiometry on the phase transition of VO2
,”
Sci. Rep.
5
,
14087
(
2015
).
29.
J.
Wu
,
Q.
Gu
,
B. S.
Guiton
,
N. P.
De Leon
,
L.
Ouyang
, and
H.
Park
, “
Strain-induced self organization of metal-insulator domains in single-crystalline VO2 nanobeams
,”
Nano Lett.
6
,
2313
2317
(
2006
).
30.
L.
Fan
,
S.
Chen
,
Z.
Luo
,
Q.
Liu
,
Y.
Wu
,
L.
Song
,
D.
Ji
,
P.
Wang
,
W.
Chu
,
C.
Gao
,
C. W.
Zou
, and
Z. Y.
Wu
, “
Strain dynamics of ultrathin VO2 film grown on TiO2(001) and the associated phase transition modulation
,”
Nano Lett.
14
,
4036
4043
(
2014
).
31.
P.
Jin
and
S.
Tanemura
, “
Relationship between transition temperature and x in V1xWxO2 films deposited by dual-target magnetron sputtering
,”
Jpn. J. Appl. Phys.
34
,
2459
(
1995
).
32.
J.
Xu
,
H.
Wang
,
Z.
Lu
,
Z.
Zhang
,
Z.
Zou
,
Z.
Yu
,
M.
Cheng
,
Y.
Liu
, and
R.
Xiong
, “
Effect of Zr doping on the magnetic and phase transition properties of VO2 powder
,”
Nanomaterials
9
,
113
(
2019
).
33.
Z.
Li
,
Y.
Guo
,
Z.
Hu
,
J.
Su
,
J.
Zhao
,
J.
Wu
,
J.
Wu
,
Y.
Zhao
,
C.
Wu
, and
Y.
Xie
, “
Hydrogen treatment for superparamagnetic VO2 nanowires with large room-temperature magnetoresistance
,”
Angew. Chem. Int. Ed.
55
,
8018
8022
(
2016
).
34.
P. E.
Blöchl
, “
Projector augmented-wave method
,”
Phys. Rev. B
50
,
17953
(
1994
).
35.
G.
Kresse
and
J.
Furthmüller
, “
Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
,”
Comput. Mater. Sci.
6
,
15
50
(
1996
).
36.
G.
Kresse
and
J.
Furthmüller
, “
Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
,”
Phys. Rev. B
54
,
11169
11186
(
1996
).
37.
G.
Kresse
, “
From ultrasoft pseudopotentials to the projector augmented-wave method
,”
Phys. Rev. B
59
,
1758
1775
(
1999
).
38.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
,
3865
3868
(
1996
).
39.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple (errata)
,”
Phys. Rev. Lett.
78
,
1396
(
1997
).
40.
S.
Dudarev
,
G.
Botton
,
S.
Savrasov
,
C.
Humphreys
, and
A.
Sutton
, “
Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study
,”
Phys. Rev. B
57
,
1505
(
1998
).
41.
H. J.
Monkhorst
and
J. D.
Pack
, “
Special points for Brillouin-zone integrations
,”
Phys. Rev. B
13
,
5188
5192
(
1976
).
42.
S. A.
Fortuna
and
X.
Li
, “
Metal-catalyzed semiconductor nanowires: A review on the control of growth directions
,”
Semicond. Sci. Technol.
25
,
024005
(
2010
).
43.
H.
Zeng
,
X.
Yu
,
H. A.
Fonseka
,
G.
Boras
,
P.
Jurczak
,
T.
Wang
,
A. M.
Sanchez
, and
H.
Liu
, “
Preferred growth direction of III–V nanowires on differently oriented Si substrates
,”
Nanotechnology
31
,
475708
(
2020
).
44.
M. J.
Wahila
,
N. F.
Quackenbush
,
J. T.
Sadowski
,
J.-O.
Krisponeit
,
J. I.
Flege
,
R.
Tran
,
S. P.
Ong
,
C.
Schlueter
,
T.-L.
Lee
,
M. E.
Holtz
,
D. A.
Muller
,
H.
Paik
,
D. G.
Schlom
,
W.-C.
Lee
, and
L. F. J.
Piper
, “The breakdown of Mott physics at VO2 surfaces,” arXiv:2012.05306 (2020).
45.
J.
Planer
,
F.
Mittendorfer
, and
J.
Redinger
, “
First principles studies of the electronic and structural properties of the rutile VO2 (110) surface and its oxygen-rich terminations
,”
J. Phys.: Condens. Matter
33
,
475002
(
2021
).
46.
T. A.
Mellan
and
R.
Grau-Crespo
, “
Density functional theory study of rutile VO2 surfaces
,”
J. Chem. Phys.
137
,
154706
(
2012
).
47.
S. K.
Misra
,
S. I.
Andronenko
, and
R. R.
Andronenko
, “
Variable-temperature EPR study of Fe3+ in VO2 single crystals
,”
Phys. Rev. B
57
,
8203
(
1998
).
48.
J. I.
Sohn
,
H. J.
Joo
,
A. E.
Porter
,
C.-J.
Choi
,
K.
Kim
,
D. J.
Kang
, and
M. E.
Welland
, “
Direct observation of the structural component of the metal-insulator phase transition and growth habits of epitaxially grown VO2 nanowires
,”
Nano Lett.
7
,
1570
1574
(
2007
).
49.
G.
Zakharova
,
V.
Volkov
,
C.
Täschner
,
I.
Hellmann
,
A.
Leonhardt
,
R.
Klingeler
, and
B.
Büchner
, “
Synthesis and characterization of V3O7H2O nanobelts
,”
Solid State Commun.
149
,
814
817
(
2009
).
50.
G.-C.
Li
,
S.-P.
Pang
,
Z.-B.
Wang
,
H.-R.
Peng
, and
Z.-K.
Zhang
, “
Synthesis of H2V3O8 single-crystal nanobelts
,”
Eur. J. Inorg. Chem.
2005
,
2060
2063
.
51.
M. F.
Becker
,
A. B.
Buckman
, and
R. M.
Walser
, “
Femtosecond laser excitation of the semiconductor-metal phase transition in VO2
,”
Appl. Phys. Lett.
65
,
1507
(
1994
).
52.
Z.
Yang
,
C.
Ko
, and
S.
Ramanathan
, “
Oxide electronics utilizing ultrafast metal-insulator transitions
,”
Annu. Rev. Mater. Res.
41
,
337
367
(
2011
).
53.
Y.
Zhou
and
S.
Ramanathan
, “
Mott memory and neuromorphic devices
,”
Proc. IEEE
103
,
1289
1310
(
2015
).
54.
M. M.
Qazilbash
,
M.
Brehm
,
B.-G.
Chae
,
P.
Ho
,
G. O.
Andreev
,
B.-J.
Kim
,
S. J.
Yun
,
A. V.
Balatsky
,
M. B.
Maple
,
F.
Keilmann
,
H.-T.
Kim
, and
D. N.
Basov
, “
Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging
,”
Science
318
,
1750
1753
(
2007
).
55.
M.
Nakano
,
K.
Shibuya
,
D.
Okuyama
,
T.
Hatano
,
S.
Ono
,
M. M.
Kawasaki
,
Y.
Iwasa
, and
Y.
Tokura
, “
Collective bulk carrier delocalization driven by electrostatic surface charge accumulation
,”
Nature
487
,
459
462
(
2012
).
56.
J.
Jeong
,
N.
Aetukuri
,
T.
Graf
,
T. D.
Schladt
,
M. G.
Samant
, and
S. S. P.
Parkin
, “
Suppression of metal-insulator transition in VO2 by electric field-induced oxygen vacancy formation
,”
Science
339
,
1402
1405
(
2013
).
57.
Y.
Hou
,
R.
Xiao
,
X.
Tong
,
S.
Dhuey
, and
D.
Yu
, “
In situ visualization of fast surface ion diffusion in vanadium dioxide nanowires
,”
Nano Lett.
17
,
7702
7709
(
2017
).
58.
G.
He
,
L.
Li
, and
A.
Manthiram
, “
VO2/rGO nanorods as a potential anode for sodium-and lithium-ion batteries
,”
J. Mater. Chem. A
3
,
14750
14758
(
2015
).
59.
Z.
Khan
,
B.
Senthilkumar
,
S. O.
Park
,
S.
Park
,
J.
Yang
,
J. H.
Lee
,
H.-K.
Song
,
Y.
Kim
,
S. K.
Kwak
, and
H.
Ko
, “
Carambola-shaped VO2 nanostructures: A binder-free air electrode for an aqueous Na–air battery
,”
J. Mater. Chem. A
5
,
2037
2044
(
2017
).
60.
X.
Xia
,
Y.
Zhang
,
D.
Chao
,
C.
Guan
,
Y.
Zhang
,
L.
Li
,
X.
Ge
,
I. M.
Bacho
,
J.
Tu
, and
H. J.
Fan
, “
Solution synthesis of metal oxides for electrochemical energy storage applications
,”
Nanoscale
6
,
5008
5048
(
2014
).
61.
P.
Liu
,
Y.
Xu
,
K.
Zhu
,
K.
Bian
,
J.
Wang
,
X.
Sun
,
Y.
Gao
,
H.
Luo
,
L.
Lu
, and
J.
Liu
, “
Ultrathin VO2 nanosheets self-assembled into 3D micro/nano-structured hierarchical porous sponge-like micro-bundles for long-life and high-rate Li-ion batteries
,”
J. Mater. Chem. A
5
,
8307
8316
(
2017
).
62.
X.
Wu
,
Y.
Tao
,
L.
Dong
,
Z.
Wang
, and
Z.
Hu
, “
Preparation of VO2 nanowires and their electric characterization
,”
Mater. Res. Bull.
40
,
315
321
(
2005
).
63.
W. R.
Mondal
,
E.
Evlyukhin
,
S. A.
Howard
,
G. J.
Paez
,
H.
Paik
,
D. G.
Schlom
,
L. F.
Piper
, and
W.-C.
Lee
, “
Role of V-V dimers on structural, electronic, magnetic, and vibrational properties of VO2 by first-principles simulations and Raman spectroscopic analysis
,”
Phys. Rev. B
103
,
214107
(
2021
).
64.
S.
Chen
,
Z.
Wang
,
L.
Fan
,
Y.
Chen
,
H.
Ren
,
H.
Ji
,
D.
Natelson
,
Y.
Huang
,
J.
Jiang
, and
C.
Zou
, “
Sequential insulator-metal-insulator phase transitions of VO2 triggered by hydrogen doping
,”
Phys. Rev. B
96
,
125130
(
2017
).
65.
H.
Yoon
,
M.
Choi
,
T.-W.
Lim
,
H.
Kwon
,
K.
Ihm
,
J. K.
Kim
,
S.-Y.
Choi
, and
J.
Son
, “
Reversible phase modulation and hydrogen storage in multivalent VO2 epitaxial thin films
,”
Nat. Mater.
15
,
1113
1119
(
2016
).
66.
L.
Fan
,
Y.
Zhu
,
C.
Chen
,
L.
Zhu
,
B.
Wang
, and
Q.
Zhang
, “
A facile strategy to realize rapid and heavily hydrogen-doped VO2 and study of hydrogen ion diffusion behavior
,”
J. Phys. Chem. C
126
,
5004
5013
(
2022
).
67.
A.
Dong
,
H.
Yu
,
F.
Wang
, and
W. E.
Buhro
, “
Solution-liquid-solid synthesis and quantum-confinement studies
,”
J. Am. Chem. Soc.
130
,
5954
(
2008
).
68.
D. J.
Carter
,
M.
Puckeridge
,
B.
Delley
, and
C.
Stampfl
, “
Quantum confinement effects in gallium nitride nanostructures: Ab initio investigations
,”
Nanotechnology
20
,
425401
(
2009
).
69.
F.
Wang
,
H.
Yu
,
S.
Jeong
,
J. M.
Pietryga
,
J. A.
Hollingsworth
,
P. C.
Gibbons
, and
W. E.
Buhro
, “
The scaling of the effective band gaps in indium arsenide quantum dots and wires
,”
ACS Nano
2
,
1903
(
2008
).
70.
M.-F.
Ng
,
L. Y.
Sim
,
H.
Da
,
H.
Jin
,
K. H.
Lim
, and
S.-W.
Yang
, “
Modulation of the work function of silicon nanowire by chemical surface passivation: A DFT study
,”
Theor. Chem. Acc.
127
,
689
695
(
2010
).
71.
Y.
Wang
and
Z.
Zhang
, “
Synthesis and field emission property of VO2 nanorods with a body-centered-cubic structure
,”
Physica E
41
,
548
551
(
2009
).
72.
J.
Lin
,
H.
Ji
,
M. W.
Swift
,
W. J.
Hardy
,
Z.
Peng
,
X.
Fan
,
A. H.
Nevidomskyy
,
J. M.
Tour
, and
D.
Natelson
, “
Hydrogen diffusion and stabilization in single-crystal VO2 micro/nanobeams by direct atomic hydrogenation
,”
Nano Lett.
14
,
5445
5451
(
2014
).
73.
K. H.
Warnick
,
B.
Wang
, and
S. T.
Pantelides
, “
Hydrogen dynamics and metallic phase stabilization in VO2
,”
Appl. Phys. Lett.
104
,
101913
(
2014
).
74.
J.-E.
Kim
,
J. Y.
Shin
,
H.-S.
Jang
,
J. W.
Jeon
,
W. G.
Hong
,
H. J.
Kim
,
J.
Choi
,
G.-T.
Kim
,
B. H.
Kim
,
J.
Park
,
Y. J.
Choi
, and
J. Y.
Park
, “
Influence of hydrogen incorporation on conductivity and work function of VO2 nanowires
,”
Nanoscale
11
,
4219
4225
(
2019
).
75.
C. G.
Van de Walle
, “
Hydrogen as a cause of doping in zinc oxide
,”
Phys. Rev. Lett.
85
,
1012
1015
(
2000
).
76.
A. K.
Singh
,
A.
Janotti
,
M.
Scheffler
, and
C. G.
Van de Walle
, “
Sources of electrical conductivity in SnO2
,”
Phys. Rev. Lett.
101
,
055502
(
2008
).
77.
A.
Singh
and
A. K.
Singh
, “
Origin of n-type conductivity of monolayer MoS2
,”
Phys. Rev. B
99
,
121201
(
2019
).
78.
J.
Lin
,
H.
Ji
,
M. W.
Swift
,
W. J.
Hardy
,
Z.
Peng
,
X.
Fan
,
A. H.
Nevidomskyy
,
J. M.
Tour
, and
D.
Natelson
, “
Hydrogen diffusion and stabilization in single-crystal VO2 micro/nanobeams by direct atomic hydrogenation
,”
Nano Lett.
14
,
5445
5451
(
2014
).

Supplementary Material

You do not currently have access to this content.