Magnetic tunnel junctions based on FeCoB as a magnetic electrode and MgO as a tunneling barrier gained much attention because of their applications in random access memories and magnetic sensors in disk drives. In this work, the structural and magnetic properties of the MgO/FeCoB/MgO trilayer have been studied precisely under x-ray standing wave (XSW) conditions, where XSW is generated through a high-density (Pt) waveguide structure. The combined x-ray scattering and fluorescence data obtained under XSW conditions revealed the formation of a high-density FeCoB layer at the MgO/FeCoB interface (FeCoB-on-MgO) in the as-deposited trilayer. Diffusion of B from the FeCoB layer into MgO is attributed to the formation of Fe- and Co-rich high-density layer (B-deficient FeCoB layer) at the interface. Angular-dependent magnetism of the trilayer structure revealed the presence of in-plane magnetic anisotropy (IMA), which disappeared with thermal annealing at a temperature of 450 °C. Stress in B-deficient FeCoB layer at the interface is attributed to the origin of IMA through magneto-elastic anisotropy energy minimization. The disappearance of anisotropy after annealing is mainly due to the removal of long-range stress and the formation of crystalline bcc-FeCo phase.

1.
S.
Peng
,
D.
Zhu
,
J.
Zhou
,
B.
Zhang
,
A.
Cao
,
M.
Wang
,
W.
Cai
,
K.
Cao
, and
W.
Zhao
,
Adv. Electron. Mater.
5
,
190034
(
2019
).
2.
S.
Ikeda
,
K.
Miura
,
H.
Yamamoto
,
K.
Mizunuma
,
H. D.
Gan
,
M.
Endo
,
S.
Kanai
,
J.
Hayakawa
,
F.
Matsukura
, and
H.
Ohno
,
Nat. Mater.
9
,
721
(
2010
).
3.
W.
Skowroński
,
T.
Nozaki
,
Y.
Shiota
,
S.
Tamaru
,
K.
Yakushiji
,
H.
Kubota
,
A.
Fukushima
,
S.
Yuasa
, and
Y.
Suzuki
,
Appl. Phys. Express
8
,
053003
(
2015
).
4.
A. T.
Hindmarch
,
A. W.
Rushforth
,
R. P.
Campion
,
C. H.
Marrows
, and
B. L.
Gallagher
,
Phys. Rev. B
83
,
1
(
2011
).
5.
S.
Singh
,
D.
Kumar
,
M.
Gupta
, and
N. P.
Lalla
,
J. Alloys Compd.
789
,
330
(
2019
).
6.
A.
Gupta
,
D.
Kumar
, and
C.
Meneghini
,
Phys. Rev. B
75
,
064424
(
2007
).
7.
A.
Kumar Bera
,
S.
Singh
,
M.
Shahid Jamal
,
Z.
Hussain
,
V. R.
Reddy
, and
D.
Kumar
,
J. Magn. Magn. Mater.
544
,
168679
(
2022
).
8.
A. G.
Khanderao
,
I.
Sergueev
,
H. C.
Wille
, and
D.
Kumar
,
Appl. Phys. Lett.
116
,
101603
(
2020
).
9.
L. G.
Parratt
,
Phys. Rev.
95
,
359
(
1954
).
10.
V. P.
Londhe
,
A.
Gupta
,
N.
Ponpandian
, and
D.
Kumar
,
J. Phys. D: Appl. Phys.
51
,
225303
(
2018
).
11.
M. S.
Jamal
,
Y.
Kumar
,
M.
Gupta
,
P.
Gupta
,
I.
Sergeev
,
H. C.
Wille
, and
D.
Kumar
,
Hyperfine Interact.
242
,
4
(
2021
).
12.
J.
Dwivedi
,
M.
Gupta
,
V. R.
Reddy
,
A.
Mishra
,
V.
Srihari
,
K. K.
Pandey
, and
A.
Gupta
,
J. Magn. Magn. Mater.
466
,
311
(
2018
).
13.
A.
Gupta
,
D.
Kumar
, and
V.
Phatak
,
Phys. Rev. B
81
,
155402
(
2010
).
14.
A.
Gupta
,
D.
Kumar
,
C.
Meneghini
, and
J.
Zegenhagen
,
J. Appl. Phys.
101
,
09D117
(
2007
).
15.
M. S.
Jamal
,
P.
Gupta
, and
D.
Kumar
,
Thin Solid Films
709
,
138246
(
2020
).
16.
Z.
Hussain
,
V. R.
Reddy
,
D.
Kumar
,
V.
Ganesan
,
V.
Dhamgaye
,
N.
Khantwal
, and
A.
Gupta
,
J. Phys. D: Appl. Phys.
50
,
425001
(
2017
).
17.
M.
Mathews
,
E. P.
Houwman
,
H.
Boschker
,
G.
Rijnders
, and
D. H. A.
Blank
,
J. Appl. Phys.
107
,
013904
(
2010
).
18.
V.
Barwal
,
S.
Husain
,
N.
Behera
,
E.
Goyat
, and
S.
Chaudhary
,
J. Appl. Phys.
123
,
053901
(
2018
).
19.
A. T.
Hindmarch
,
C. J.
Kinane
,
M.
MacKenzie
,
J. N.
Chapman
,
M.
Henini
,
D.
Taylor
,
D. A.
Arena
,
J.
Dvorak
,
B. J.
Hickey
, and
C. H.
Marrows
,
Phys. Rev. Lett.
100
,
1
(
2008
).
20.
L.
Kipgen
,
H.
Fulara
,
M.
Raju
, and
S.
Chaudhary
,
J. Magn. Magn. Mater.
324
,
3118
(
2012
).
21.
H.
Kurt
,
K.
Rode
,
K.
Oguz
,
M.
Boese
,
C. C.
Faulkner
, and
J. M. D.
Coey
,
Appl. Phys. Lett.
96
,
262501
(
2010
).
22.
V.
Harnchana
,
A. T.
Hindmarch
,
M. C.
Sarahan
,
C. H.
Marrows
,
A. P.
Brown
, and
R. M. D.
Brydson
,
J. Appl. Phys.
113
,
163502
(
2013
).
You do not currently have access to this content.