Solid-state laser refrigeration of semiconductors remains an outstanding experimental challenge. In this work, we show that, following excitation with a laser wavelength of 532 nm, bulk diamond crystals doped with H3 centers both emit efficient up-conversion (anti-Stokes) photoluminescence and also show significantly reduced photothermal heating relative to crystals doped with nitrogen–vacancy (NV) centers. The H3 center in diamond is a highly photostable defect that avoids bleaching at high laser irradiances of 10–70 MW/cm2 and has been shown to exhibit laser action, tunable over the visible band of 500–600 nm. The observed reduction of photothermal heating arises due to a decrease in the concentration of absorbing point defects, including NV-centers. These results encourage future exploration of techniques for H3 enrichment in diamonds under high-pressure, high-temperature conditions for the simultaneous anti-Stokes fluorescence cooling and radiation balanced lasing in semiconductor materials. Reducing photothermal heating in diamond through the formation of H3 centers also opens up new possibilities in quantum sensing via optically detected magnetic resonance spectroscopy at ambient conditions.

1.
C.
Laube
,
J.
Hellweg
,
C.
Sturm
,
J.
Griebel
,
M.
Grundmann
,
A.
Kahnt
, and
B.
Abel
, “
Photoinduced heating of graphitized nanodiamonds monitored by the Raman diamond peak
,”
J. Phys. Chem. C
122
,
25685
25691
(
2018
).
2.
P.
Neumann
,
I.
Jakobi
,
F.
Dolde
,
C.
Burk
,
R.
Reuter
,
G.
Waldherr
,
J.
Honert
,
T.
Wolf
,
A.
Brunner
,
J. H.
Shim
,
D.
Suter
,
H.
Sumiya
,
J.
Isoya
, and
J.
Wrachtrup
, “
High-precision nanoscale temperature sensing using single defects in diamond
,”
Nano. Lett.
13
,
2738
2742
(
2013
), arXiv:1304.0688.
3.
G.
Kucsko
,
P. C.
Maurer
,
N. Y.
Yao
,
M.
Kubo
,
H. J.
Noh
,
P. K.
Lo
,
H.
Park
, and
M. D.
Lukin
, “
Nanometre-scale thermometry in a living cell
,”
Nature
500
,
54
58
(
2013
).
4.
T.
Delord
,
L.
Nicolas
,
M.
Bodini
, and
G.
Hétet
, “
Diamonds levitating in a Paul trap under vacuum: Measurements of laser-induced heating via NV center thermometry
,”
Appl. Phys. Lett.
111
,
013101
(
2017
).
5.
A. C.
Frangeskou
,
A. T. M.
A. Rahman
,
L.
Gines
,
S.
Mandal
,
O. A.
Williams
,
P. F.
Barker
, and
G. W.
Morley
, “
Pure nanodiamonds for levitated optomechanics in vacuum
,”
New J. Phys.
20
,
043016
(
2018
).
6.
D. V.
Seletskiy
,
S. D.
Melgaard
,
S.
Bigotta
,
A.
Di Lieto
,
M.
Tonelli
, and
M.
Sheik-Bahae
, “
Laser cooling of solids to cryogenic temperatures
,”
Nat. Photonics
4
,
161
164
(
2010
).
7.
A.
Pant
,
X.
Xia
,
E. J.
Davis
, and
P. J.
Pauzauskie
, “
Solid-state laser refrigeration of a composite semiconductor Yb:YLiF4 optomechanical resonator
,”
Nat. Commun.
11
,
3235
(
2020
).
8.
D. R.
Luntz-Martin
,
R. G.
Felsted
,
S.
Dadras
,
P. J.
Pauzauskie
, and
A. N.
Vamivakas
, “
Laser refrigeration of optically levitated sodium yttrium fluoride nanocrystals
,”
Opt. Lett.
46
,
3797
3800
(
2021
).
9.
P. B.
Roder
,
B. E.
Smith
,
X.
Zhou
,
M. J.
Crane
, and
P. J.
Pauzauskie
, “
Laser refrigeration of hydrothermal nanocrystals in physiological media
,”
Proc. Natl. Acad. Sci. U.S.A.
112
,
15024
15029
(
2015
).
10.
M.
Kern
,
J.
Jeske
,
D. W. M.
Lau
,
A. D.
Greentree
,
F.
Jelezko
, and
J.
Twamley
, “
Optical cryocooling of diamond
,”
Phys. Rev. B
95
,
235306
(
2017
).
11.
X.
Xia
,
A.
Pant
,
A. S.
Ganas
,
F.
Jelezko
, and
P. J.
Pauzauskie
, “
Quantum point defects for solid-state laser refrigeration
,”
Adv. Mater.
33
,
1905406
(
2021
).
12.
A.
Pant
,
R. G.
Felsted
,
A. B.
Bard
,
X.
Xia
,
S.
Dadras
,
K.
Shayan
,
D. R.
Luntz-Martin
,
D.
Mannikko
,
I. M.
Pavlovetc
,
S.
Stoll
,
M.
Kuno
,
A. N.
Vamivakas
, and
P. J.
Pauzauskie
, “Solid-state laser refrigeration of nanodiamond quantum sensors,” arXiv:2007.15247[cond-mat.mtrl-sci] (2020).
13.
M.
Sheik-Bahae
and
R. I.
Epstein
, “
Can laser light cool semiconductors?
,”
Phys. Rev. Lett.
92
,
247403
(
2004
).
14.
H.
Gauck
,
M.
Renn
,
E.
Cornell
, and
K.
Bertness
, “Laser refrigeration in the solid state,” in Quantum Electronics and Laser Science Conference (Optical Society of America, 1995), p. QPD16.
15.
Y. V.
Morozov
,
S.
Zhang
,
A.
Pant
,
B.
Jankó
,
S. D.
Melgaard
,
D. A.
Bender
,
P. J.
Pauzauskie
, and
M.
Kuno
, “
Can lasers really refrigerate CdS nanobelts?
,”
Nature
570
,
E60
E61
(
2019
).
16.
C. K.
Lin
,
H. C.
Chang
,
M.
Hayashi
, and
S. H.
Lin
, “
Excitation properties of the H3 defect center in diamond: A theoretical study
,”
Chem. Phys. Lett.
475
,
68
72
(
2009
).
17.
R.
Kolesov
,
S.
Lasse
,
C.
Rothfuchs
,
A. D.
Wieck
,
K.
Xia
,
T.
Kornher
, and
J.
Wrachtrup
, “
Superresolution microscopy of single rare-earth emitters in YAG and H3 centers in diamond
,”
Phys. Rev. Lett.
120
,
033903
(
2018
).
18.
S.
Rand
and
L.
DeShazer
, “
Visible color-center laser in diamond
,”
Opt. Lett.
10
,
481
483
(
1985
).
19.
T. T.
Tran
,
B.
Regan
,
E. A.
Ekimov
,
Z.
Mu
,
Y.
Zhou
,
W.-b.
Gao
,
P.
Narang
,
A. S.
Solntsev
,
M.
Toth
,
I.
Aharonovich
, and
C.
Bradac
, “
Anti-Stokes excitation of solid-state quantum emitters for nanoscale thermometry
,”
Sci. Adv.
5
,
eaav9180
(
2019
).
20.
H.
Pinto
,
R.
Jones
,
D.
Palmer
,
J.
Goss
,
P.
Briddon
, and
S.
Öberg
, “
On the diffusion of NV defects in diamond
,”
Phys. Status Solidi A
209
,
1765
1768
(
2012
).
21.
M. N. R.
Ashfold
,
J. P.
Goss
,
B. L.
Green
,
P. W.
May
,
M. E.
Newton
, and
C. V.
Peaker
, “
Nitrogen in diamond
,”
Chem. Rev.
120
,
5745
5794
(
2020
).
22.
M.
Thomaz
and
G.
Davies
, “
The decay time of N3 luminescence in natural diamond
,”
Proc. R. Soc. A
362
,
405
419
(
1978
).
23.
G.
Liaugaudas
,
A. T.
Collins
,
K.
Suhling
,
G.
Davies
, and
R.
Heintzmann
, “
Luminescence-lifetime mapping in diamond
,”
J. Phys. Condens. Matter
21
,
364210
(
2009
).
24.
H.
Diab
,
C.
Arnold
,
F.
Lédée
,
G.
Trippé-Allard
,
G.
Delport
,
C.
Vilar
,
F.
Bretenaker
,
J.
Barjon
,
J.-S.
Lauret
,
E.
Deleporte
et al., “
Impact of reabsorption on the emission spectra and recombination dynamics of hybrid perovskite single crystals
,”
J. Phys. Chem. Lett.
8
,
2977
2983
(
2017
).
25.
A.
Collins
,
M.
Thomaz
, and
M. I. B.
Jorge
, “
Luminescence decay time of the 1.945 eV centre in type ib diamond
,”
J. Phys. C Solid State Phys.
16
,
2177
(
1983
).
26.
A.
Batalov
,
C.
Zierl
,
T.
Gaebel
,
P.
Neumann
,
I.-Y.
Chan
,
G.
Balasubramanian
,
P.
Hemmer
,
F.
Jelezko
, and
J.
Wrachtrup
, “
Temporal coherence of photons emitted by single nitrogen-vacancy defect centers in diamond using optical Rabi-oscillations
,”
Phys. Rev. Lett.
100
,
077401
(
2008
).
27.
N.
Aslam
,
G.
Waldherr
,
P.
Neumann
,
F.
Jelezko
, and
J.
Wrachtrup
, “
Photo-induced ionization dynamics of the nitrogen vacancy defect in diamond investigated by single-shot charge state detection
,”
New J. Phys.
15
,
013064
(
2013
).
28.
S. D.
Subedi
,
V. V.
Fedorov
,
J.
Peppers
,
D. V.
Martyshkin
,
S. B.
Mirov
,
L.
Shao
, and
M.
Loncar
, “
Laser spectroscopic characterization of negatively charged nitrogen-vacancy (NV) centers in diamond
,”
Optics Mater. Express
9
,
2076
2087
(
2019
).
29.
T.
Plakhotnik
,
M. W.
Doherty
,
J. H.
Cole
,
R.
Chapman
, and
N. B.
Manson
, “
All-optical thermometry and thermal properties of the optically detected spin resonances of the NV-center in nanodiamond
,”
Nano Lett.
14
,
4989
4996
(
2014
).
30.
D. M.
Toyli
,
D. J.
Christle
,
A.
Alkauskas
,
B. B.
Buckley
,
C. G.
Van de Walle
, and
D. D.
Awschalom
, “
Measurement and control of single nitrogen-vacancy center spins above 600 K
,”
Phys. Rev. X
2
,
031001
(
2012
).
31.
R.
Jones
,
J. P.
Goss
,
H.
Pinto
, and
D. W.
Palmer
, “
Diffusion of nitrogen in diamond and the formation of A-centres
,”
Diamond Relat. Mater.
53
,
35
39
(
2015
).
32.
S.
Chakravarthi
,
C.
Moore
,
A.
Opsvig
,
C.
Pederson
,
E.
Hunt
,
A.
Ivanov
,
I.
Christen
,
S.
Dunham
, and
K.-M. C.
Fu
, “
Window into NV center kinetics via repeated annealing and spatial tracking of thousands of individual NV centers
,”
Phys. Rev. Mater.
4
,
023402
(
2020
).
33.
P.
Deák
,
B.
Aradi
,
M.
Kaviani
,
T.
Frauenheim
, and
A.
Gali
, “
Formation of NV centers in diamond: A theoretical study based on calculated transitions and migration of nitrogen and vacancy related defects
,”
Phys. Rev. B
89
,
075203
(
2014
).
34.
M. D.
Crossfield
,
G.
Davies
,
A. T.
Collins
, and
E. C.
Lightowlers
, “
The role of defect interactions in reducing the decay time of H3 luminescence in diamond
,”
J. Phys. C Solid State Phys.
7
,
1909
1917
(
1974
).

Supplementary Material

You do not currently have access to this content.