Quantum-dot cellular automata (QCA) may provide low-power, general-purpose computing in the post-CMOS era. A molecular implementation of QCA features nanometer-scale devices and may support THz switching speeds at room-temperature. Here, we explore the ability of molecular QCA circuits to tolerate unwanted applied electric fields, which may come from a variety of sources. One likely source of strong unwanted electric fields may be electrodes recently proposed for the write-in of classical bits to molecular QCA input circuits. Previous models have shown that the input circuits are sensitive to the applied field, and a coupled QCA wire can successfully transfer the input bit to downstream circuits despite strong applied fields. However, the ability of other QCA circuits to tolerate an applied field has not yet been demonstrated. Here, we study the robustness of various QCA circuits by calculating their ground state responses in the presence of an applied field. To do this, a circuit is built from several QCA molecules, each described as a two-state system. A circuit Hamiltonian is formed and diagonalized. All pairwise interactions between cells are considered, along with all correlations. An examination of the ground state shows that these QCA circuits may indeed tolerate strong unwanted electric fields. We also show that circuit immunity to the dominant unwanted field component may be obtained by choosing the orientation of constituent molecules. This suggests that relatively large electrodes used for bit write-in to molecular QCA need not disrupt the operation of nearby QCA circuits. The circuits may tolerate significant electric fields from other sources as well.

1.
C.
Lent
,
P.
Tougaw
,
W.
Porod
, and
G.
Bernstein
, “
Quantum cellular automata
,”
Nanotechnology
4
,
49
(
1993
).
2.
C. S.
Lent
, “
Molecular electronics—Bypassing the transistor paradigm
,”
Science
288
,
1597
1599
(
2000
).
3.
E.
Blair
,
S.
Corcelli
, and
C.
Lent
, “
Electric-field-driven electron-transfer in mixed-valence molecules
,”
J. Chem. Phys.
145
,
014307
(
2016
).
4.
M.
Lieberman
,
S.
Chellamma
,
B.
Varughese
,
Y.
Wang
,
C.
Lent
,
G.
Bernstein
,
G.
Snider
, and
F.
Peiris
, “
Quantum-dot cellular automata at a molecular scale
,”
Ann. N.Y. Acad. Sci.
960
,
225
239
(
2002
).
5.
E.
Blair
, “
Electric-field inputs for molecular quantum-dot cellular automata circuits
,”
IEEE Trans. Nanotechnol.
18
,
453
460
(
2019
).
6.
P.
Cong
and
E.
Blair
, “Robust electric-field input circuits for clocked molecular quantum-dot cellular automata,” arXiv:2103.03396 [quant-ph] (2021).
7.
P.
Tougaw
and
C.
Lent
, “
Logical devices implemented using quantum cellular automata
,”
J. Appl. Phys.
75
,
1818
1825
(
1994
).
8.
M.
Niemier
,
M.
Kontz
, and
P.
Kogge
, “A design of and design tools for a novel quantum dot based microprocessor,” in
Proceedings of the 37th Design Automation Conference
(Association for Computing Machinery (ACM), 2000), pp. 227–232.
9.
G. L.
Snider
,
O.
Orlov
,
I.
Amlani
,
G. H.
Bernstein
,
C. S.
Lent
,
J. L.
Merz
, and
W.
Porod
, “
A functional cell for quantum-dot cellular automata
,”
Solid-State Electron.
42
,
1355
1359
(
1998
).
10.
I.
Amlani
,
A.
Orlov
,
R.
Kummamuru
,
G.
Bernstein
,
C.
Lent
, and
G.
Snider
, “
Experimental demonstration of a leadless quantum-dot cellular automata cell
,”
Appl. Phys. Lett.
77
,
738
740
(
2000
).
11.
C.
Smith
,
S.
Gardelis
,
A.
Rushforth
,
R.
Crook
,
J.
Cooper
,
D.
Ritchie
,
E.
Linfield
,
Y.
Jin
, and
M.
Pepper
, “
Realization of quantum-dot cellular automata using semiconductor quantum dots
,”
Superlattices Microstruct.
34
,
195
203
(
2003
), 6th International Conference on New Phenomena in Mesoscopic Structures/4th International Conference on Surfaces and Interfaces of Mesoscopic Devices, Maui, HI, 1–5 December 2003.
12.
M.
Mitic
,
M. C.
Cassidy
,
K. D.
Petersson
,
R. P.
Starrett
,
E.
Gauja
,
R.
Brenner
,
R. G.
Clark
,
A. S.
Dzurak
,
C.
Yang
, and
D. N.
Jamieson
, “
Demonstration of a silicon-based quantum cellular automata cell
,”
Appl. Phys. Lett.
89
,
013503
(
2006
).
13.
M. B.
Haider
,
J. L.
Pitters
,
G. A.
DiLabio
,
L.
Livadaru
,
J. Y.
Mutus
, and
R. A.
Wolkow
, “
Controlled coupling and occupation of silicon atomic quantum dots at room temperature
,”
Phys. Rev. Lett.
102
,
046805
(
2009
).
14.
A. O.
Orlov
,
I.
Amlani
,
G.
Toth
,
C. S.
Lent
,
G. H.
Bernstein
, and
G. L.
Snider
, “
Experimental demonstration of a binary wire for quantum-dot cellular automata
,”
Appl. Phys. Lett.
74
,
2875
2877
(
1999
).
15.
G. L.
Snider
,
A. O.
Orlov
,
I.
Amlani
,
G. H.
Bernstein
,
C. S.
Lent
,
J. L.
Merz
, and
W.
Porod
, “
Quantum-dot cellular automata: Line and majority logic gate
,”
Jpn. J. Appl. Phys., Part 1
38
,
7227
7229
(
1999
).
16.
A.
Orlov
,
I.
Amlani
,
R.
Kummamuru
,
R.
Rajagopal
,
G.
Toth
,
J.
Timler
,
C.
Lent
,
G.
Bernstein
, and
G.
Snider
, “
Power gain in a quantum-dot cellular automata latch
,”
Appl. Phys. Lett.
81
,
1332
1334
(
2002
).
17.
R.
Kummamuru
,
A.
Orlov
,
G.
Toth
,
J.
Timler
,
R.
Rajagopal
,
C.
Lent
,
G.
Bernstein
, and
G.
Snider
, “Power gain in a quantum-dot cellular automata (QCA) shift register,” in Proceedings of the 2001 1st IEEE Conference on Nanotechnology. IEEE-NANO 2001 (Cat. No.01EX516), Maui, HI (IEEE, 2001), pp. 431–436.
18.
G.
Tóth
and
C. S.
Lent
, “
Quasiadiabatic switching for metal-island quantum-dot cellular automata
,”
J. Appl. Phys.
85
,
2977
2984
(
1999
).
19.
J.
Timler
and
C. S.
Lent
, “
Power gain and dissipation in quantum-dot cellular automata
,”
J. Appl. Phys.
91
,
823
831
(
2002
).
20.
R.
Kummamuru
,
A.
Orlov
,
R.
Ramasubramaniam
,
C.
Lent
,
G.
Bernstein
, and
G.
Snider
, “
Operation of a quantum-dot cellular automata (QCA) shift register and analysis of errors
,”
IEEE Trans. Electron. Dev.
50
,
1906
1913
(
2003
).
21.
C.
Lent
,
B.
Isaksen
, and
M.
Lieberman
, “
Molecular quantum-dot cellular automata
,”
J. Am. Chem. Soc.
125
,
1056
1063
(
2003
).
22.
M.
Manimaran
,
G.
Snider
,
C.
Lent
,
V.
Sarveswaran
,
M.
Lieberman
,
Z.
Li
, and
T.
Fehlner
, “
Scanning tunneling microscopy and spectroscopy investigations of QCA molecules
,”
Ultramicroscopy
97
,
55
63
(
2003
).
23.
J.
Berger
,
M.
Ondráček
,
O.
Stetsovych
,
P.
Malý
,
P.
Holý
,
J.
Rybáček
,
M.
Švec
,
I.
Stará
,
T.
Mančal
,
I.
Starý
, and
P.
Jelínek
, “
Quantum dissipation driven by electron transfer within a single molecule investigated with atomic force microscopy
,”
Nat. Commun.
11
,
1337
(
2020
).
24.
Y.
Lu
and
C.
Lent
, “
Counterion-free molecular quantum-dot cellular automata using mixed valence zwitterions: A double-dot derivative of the [closo-1-CB9H10] cluster
,”
Chem. Phys. Lett.
582
,
86
89
(
2013
).
25.
H.
Qi
,
A.
Gupta
,
B.
Noll
,
G.
Snider
,
Y.
Lu
,
C.
Lent
, and
T.
Fehlner
, “
Dependence of field switched ordered arrays of dinuclear mixed-valence complexes on the distance between the redox centers and the size of the counterions
,”
J. Am. Chem. Soc.
127
,
15218
15227
(
2005
).
26.
J.
Christie
,
R.
Forrest
,
S.
Corcelli
,
N.
Wasio
,
R.
Quardokus
,
R.
Brown
,
S.
Kandel
,
Y.
Lu
,
C.
Lent
, and
K.
Henderson
, “
Synthesis of a neutral mixed-valence diferrocenyl carborane for molecular quantum-dot cellular automata applications
,”
Angew. Chem.
127
,
15668
15671
(
2015
).
27.
K.
Hennessy
and
C. S.
Lent
, “
Clocking of molecular quantum-dot cellular automata
,”
J. Vacuum Sci. Technol. B
19
,
1752
1755
(
2001
).
28.
E.
Blair
and
C.
Lent
, “An architecture for molecular computing using quantum-dot cellular automata,” in IEEE Conference on Nanotechnology (IEEE, 2003), Vol. 1, pp. 402–405.
29.
E.
Blair
and
C.
Lent
, “
Clock topologies for molecular quantum-dot cellular automata
,”
J. Low Power Electron.
8
,
31
(
2018
).
30.
J.
Retallick
and
K.
Walus
, “
Population congestion in 3-state quantum-dot cellular automata
,”
J. Appl. Phys.
127
,
244301
(
2020
).
31.
N.
Liza
,
D.
Murphey
,
P.
Cong
,
D.
Beggs
,
Y.
Lu
, and
E.
Blair
, “
Asymmetric, mixed-valence molecules for spectroscopic readout of quantum-dot cellular automata
,”
Nanotechnology
33
,
115201
(
2022
).
32.
W.
Hu
,
K.
Sarveswaran
,
M.
Lieberman
, and
G.
Bernstein
, “
High-resolution electron beam lithography and DNA nano-patterning for molecular QCA
,”
IEEE Trans. Nanotechnol.
4
,
312
316
(
2005
).
33.
K.
Sarveswaran
,
W.
Hu
,
P.
Huber
,
G.
Bernstein
, and
M.
Lieberman
, “
Deposition of DNA rafts on cationic SAMs on silicon [100]
,”
Langmuir
22
,
11279
11283
(
2006
).
34.
M.
Pillers
,
V.
Gross
, and
M.
Lieberman
, “
Electron-beam lithography and molecular liftoff for directed attachment of dna nanostructures on silicon: Top-down meets bottom-up
,”
Acc. Chem. Res.
47
,
1759
1767
(
2014
).
35.
C.
Lent
and
P.
Tougaw
, “
A device architecture for computing with quantum dots
,”
Proc. IEEE
85
,
541
557
(
1997
).
36.
T.
Dysart
and
P.
Kogge
, “
Reliability impact of n-modular redundancy in QCA
,”
IEEE Trans. Nanotechnol.
10
,
1015
1022
(
2010
).
37.
E. P.
Blair
,
M.
Liu
, and
C. S.
Lent
, “
Signal energy in quantum-dot cellular automata bit packets
,”
J. Comput. Theor. Nanosci.
8
,
972
982
(
2011
).
38.
H.
Qi
,
S.
Sharma
,
Z.
Li
,
G. L.
Snider
,
A. O.
Orlov
,
C. S.
Lent
, and
T. P.
Fehlner
, “
Molecular quantum cellular automata cells. Electric field driven switching of a silicon surface bound array of vertically oriented two-dot molecular quantum cellular automata
,”
J. Am. Chem. Soc.
125
,
15250
15259
(
2003
).
39.
R.
Quardokus
,
Y.
Lu
,
N.
Wasio
,
C.
Lent
,
F.
Justaud
,
C.
Lapinte
, and
S.
Kandel
, “
Through-bond versus through-space coupling in mixed-valence molecules: Observation of electron localization at the single-molecule scale
,”
J. Am. Chem. Soc.
134
,
1710
1714
(
2012
).
40.
Y.
Lu
and
C.
Lent
, “
Self-doping of molecular quantum-dot cellular automata: Mixed valence zwitterions
,”
Phys. Chem. Chem. Phys.
13
,
14928
14936
(
2011
).
41.
M.
LaRue
,
D.
Tougaw
, and
J.
Will
, “
Stray charge in quantum-dot cellular automata: A validation of the intercellular hartree approximation
,”
IEEE Trans. Nanotechnol.
12
,
225
233
(
2013
).
42.
T.
Groizard
,
S.
Kahlal
, and
J.
Halet
, “
Zwitterionic mixed-valence species for the design of neutral clocked molecular quantum-dot cellular automata
,”
Inorg. Chem.
59
,
15772
15779
(
2020
).
43.
S.
Luo
,
A.
Mancini
,
R.
Berté
,
B.
Hoff
,
S.
Maier
, and
J.
de Mello
, “
Massively parallel arrays of size-controlled metallic nanogaps with gap-widths down to the sub-3-nm level
,”
Adv. Mater.
33
,
2100491
(
2021
).
44.
M.
Yuan
,
I.
Tanabe
,
J.
Bernard-Schaaf
,
Q.
Shi
,
V.
Schlegel
,
R.
Schurhammer
,
P.
Dowben
,
B.
Doudin
,
L.
Routaboul
, and
P.
Braunstein
, “
Influence of steric hindrance on the molecular packing and the anchoring of quinonoid zwitterions on gold surfaces
,”
New J. Chem.
40
,
5782
5796
(
2016
).
45.
K.
Sarveswaran
,
P.
Huber
,
M.
Lieberman
,
C.
Russo
, and
C.
Lent
, “Nanometer scale rafts built from DNA tiles,” in Proceedings of the Third IEEE Conference on Nanotechnology (IEEE, 2003), pp. 417–420.
46.
K.
Walus
,
F.
Karim
, and
A.
Ivanov
, “
Architecture for an external input into a molecular QCA circuit
,”
J. Comput. Electron.
8
,
35
42
(
2009
).
47.
A.
Pulimeno
,
M.
Graziano
,
C.
Abrardi
,
D.
Demarchi
, and
G.
Piccinini
, Molecular QCA: A write-in system based on electric fields, in Proceedings of the 4th IEEE International Nanoelectronics Conference (IEEE, 2011).
48.
J.
Henry
,
J.
Previti
, and
E.
Blair
, “Electric-field bit write-in for clocked molecular quantum-dot cellular automata circuits,” in Proceedings of the 2018 IEEE International Conference on Rebooting Computing (ICRC 2018) (IEEE, 2018).
49.
P.
Lafarge
,
H.
Pothier
,
E.
Williams
,
D.
Esteve
,
C.
Urbina
, and
M.
Devoret
, “
Direct observation of macroscopic charge quantization
,”
Z. Phys. B
85
,
327
332
(
1991
).
50.
X.
Luo
,
A.
Orlov
, and
G.
Snider
, “
Origin of coulomb blockade oscillations in single-electron transistors fabricated with granulated Cr/Cr2O3 resistive microstrips
,”
Microelectr. J.
36
,
308
312
(
2005
).
51.
H.
Brenning
,
S.
Kafanov
,
T.
Duty
,
S.
Kubatkin
, and
P.
Delsing
, “
An ultrasensitive radio-frequency single-electron transistor working up to 4.2k
,”
J. Appl. Phys.
100
,
114321
(
2006
).
52.
R.
Joyce
,
H.
Qi
,
T.
Fehlner
,
C.
Lent
,
A.
Orlov
, and
G.
Snider
, “A system to demonstrate the bistability in molecules for application in a molecular QCA cell,” in IEEE Nanotechnology Materials and Devices Conference (IEEE, 2009).
53.
C. S.
Lent
,
P. D.
Tougaw
, and
W.
Porod
, “Quantum cellular automata: The physics of computing with arrays of quantum dot molecules,” in Workshop on Physics and Computation, PHYSCOMP’94 Proceedings (IEEE, 1994), pp. 5–13.
54.
J.
Retallick
and
K.
Walus
, “
Limits of adiabatic clocking in quantum-dot cellular automata
,”
J. Appl. Phys.
127
,
054502
(
2020
).
You do not currently have access to this content.