In situ x-ray diffraction (XRD) measurements and their analysis in Al single crystals shock compressed along the [100]-direction were utilized to examine shock wave induced microstructural heterogeneities. High-resolution XRD line profiles for the 200, 400, and 600 Al peaks were measured in uniaxial strain compression states to either 5.6 or 11.7 GPa and partial stress release to 3.5 or 6.6 GPa, respectively. Broadening of the XRD line profiles was analyzed to determine the magnitude of the longitudinal micro-strain distribution (0.195% and 0.28% full width at half maximum for 3.5 and 6.6 GPa stresses, respectively) and the size of coherently diffracting domains (CDDs) (0.125 and 0.07 μm for 3.5 and 6.6 GPa stresses, respectively). From the longitudinal micro-strain distributions, the distribution of local stress differences (or stress deviators) was obtained in the shocked state. The full width at half maximum of this distribution, a measure of the local stress inhomogeneities, is greater than half of the macroscopic stress difference for both 3.5 and 6.6 GPa peak stresses, suggesting considerable variation in local stress deviators. The CDD sizes determined here are comparable to characteristic length scales for defect-free regions determined from defect density measurements in post-shock recovery experiments. The present work represents an important step in understanding material microstructure and inhomogeneities in the shock-compressed state.
Skip Nav Destination
Micro-strains, local stresses, and coherently diffracting domain size in shock compressed Al(100) single crystals
Article navigation
14 June 2022
Research Article|
June 13 2022
Micro-strains, local stresses, and coherently diffracting domain size in shock compressed Al(100) single crystals
Stefan J. Turneaure
;
Stefan J. Turneaure
(Data curation, formal analysis, investigation, methodology, software, writing – original draft)
1
Institute for Shock Physics, Washington State University
, Pullman, Washington 99164, USA
Search for other works by this author on:
Y. M. Gupta
Y. M. Gupta
a)
(Conceptualization, funding acquisition, investigation, methodology, project administration, resources, supervision, writing – review & editing)
1
Institute for Shock Physics, Washington State University
, Pullman, Washington 99164, USA
2
Department of Physics and Astronomy, Washington State University
, Pullman, Washington 99164, USA
a)Author to whom correspondence should be addressed: ymgupta@wsu.edu
Search for other works by this author on:
a)Author to whom correspondence should be addressed: ymgupta@wsu.edu
J. Appl. Phys. 131, 225902 (2022)
Article history
Received:
March 08 2022
Accepted:
May 21 2022
Citation
Stefan J. Turneaure, Y. M. Gupta; Micro-strains, local stresses, and coherently diffracting domain size in shock compressed Al(100) single crystals. J. Appl. Phys. 14 June 2022; 131 (22): 225902. https://doi.org/10.1063/5.0090680
Download citation file:
Sign in
Don't already have an account? Register
Sign In
You could not be signed in. Please check your credentials and make sure you have an active account and try again.
Sign in via your Institution
Sign in via your InstitutionPay-Per-View Access
$40.00