Thermal wave radar (TWR) thermography is a high-efficient nondestructive testing technique to increase the signal-to-noise ratio (SNR) and to enhance target detection capability. However, the detection of subsurface defects, especially small-size defects, usually requires a distinctively high SNR and depth resolvability. This paper proposed an orthogonal phase-coded linear frequency modulated (OPCLFM) excitation waveform, which has significantly improved the SNR and depth resolvability of TWR compared to the LFM waveform. The pulse compression quality of the OPCLFM waveform was initially evaluated through a 1D thermal wave analytical model of carbon fiber reinforced polymer (CFRP) laminate. Results show that the OPCLFM waveform combined with the Kaiser window function compresses the largest sidelobe at least by 18.39 dB compared to the LFM waveform. Furthermore, the superior depth resolvability performance of the OPCLFM waveform was also validated by 3D finite element simulation. Finally, the effect of thermal conductivity on the depth resolvability performance of the OPCLFM waveform was evaluated quantitatively by a delaminated CFRP laminate.

1.
H.
Zhang
,
S.
Sfarra
,
F.
Sarasini
,
C.
Ibarra-Castanedo
,
S.
Perilli
,
H.
Fernandes
,
Y.
Duan
,
J.
Peeters
,
N. P.
Avdelidis
, and
X.
Maldague
,
IEEE Trans. Industr. Inform.
14
(
2
),
514
(
2018
).
2.
Z. Y.
He
,
H. J.
Wang
,
Y. Z.
He
,
G. X.
Zhang
,
J. Z.
Wang
,
G. Y.
Zou
, and
T.
Chady
,
IEEE Sens. J.
20
(
1
),
328
(
2019
).
3.
G.
Thummerer
,
G.
Mayr
, and
P.
Burgholzer
,
J. Appl. Phys.
128
,
125108
(
2020
).
4.
F.
Wang
,
J.
Liu
,
Y.
Liu
, and
Y.
Wang
,
NDT E Int.
84
,
54
(
2016
).
5.
F.
Wang
,
J. Y.
Liu
,
B. Y.
Dong
,
G. B.
Liu
,
M. J.
Chen
, and
Y.
Wang
,
IEEE Trans. Instrum. Meas.
70
,
4505710
(
2021
).
6.
S. C.
Wu
,
B.
Gao
,
Y.
Yang
,
Y. Y.
Zhu
,
P.
Burrascano
,
S.
Laureti
,
M.
Ricci
, and
Y. Z.
Wang
,
Infrared Phys. Technol.
102
,
124
(
2019
).
7.
Y. Z.
He
and
R. Z.
Yang
,
IEEE Trans. Industr. Inform.
11
(
6
),
1287
(
2015
).
8.
S.
Hedayatrasa
,
G.
Poelman
,
J.
Segers
,
W.
Van Paepegem
, and
M.
Kersemans
,
Compos. Struct.
225
,
111177
(
2019
).
9.
S.
Hedayatrasa
,
G.
Poelman
,
J.
Segers
,
W.
Van Paepegem
, and
M.
Kersemans
,
Mech. Syst. Signal Process.
132
,
512
(
2019
).
10.
S.
Hedayatrasa
,
G.
Poelman
,
J.
Segers
,
W.
Van Paepegem
, and
M.
Kersemans
,
Struct. Control Health Monit.
29
,
2906
(
2022
).
11.
Z. T.
Luo
,
H.
Luo
,
S.
Wang
,
F.
Chen
,
Z. H.
Su
,
P.
Shen
, and
H.
Zhang
,
IEEE Trans. Industr. Inform.
(published online 2022).
12.
F.
Wang
,
Z. Y.
Yue
,
J. Y.
Liu
,
H.
Qi
,
W. J.
Sun
,
M. J.
Chen
,
Y.
Wang
, and
H. H.
Yue
,
J. Appl. Phys.
131
,
053101
(
2022
).
13.
V.
Arora
,
J. A.
Siddiqui
,
R.
Mulaveesala
, and
A.
Muniyappa
,
IEEE Sens. J.
15
(
2
),
663
(
2015
).
14.
K. X.
Liu
,
Y. J.
Li
,
J. G.
Yang
,
Y.
Liu
, and
Y.
Yao
,
IEEE Trans. Instrum. Meas.
69
(
10
),
8261
(
2020
).
15.
Q. J.
Tang
,
J. Y.
Liu
,
J. M.
Dai
, and
Z. Y.
Yu
,
Appl. Therm. Eng.
114
,
770
(
2017
).
16.
C. A.
Alvarez-Restrepo
,
H. D.
Benitez-Restrepo
, and
L. E.
Tobn
,
NDT E Int.
91
,
9
(
2017
).
17.
F.
Wang
,
J. Y.
Liu
,
B. Y.
Dong
,
J. L.
Gong
,
W.
Peng
,
Y.
Wang
,
M. J.
Chen
, and
G. B.
Liu
,
Measurement
174
,
108997
(
2021
).
18.
Z.
Zeng
,
N.
Tao
,
L. C.
Feng
, and
C. L.
Zhang
,
J. Appl. Phys.
112
,
023112
(
2012
).
19.
P.
Song
,
P.
Xiao
,
J. Y.
Liu
, and
Y. H.
Wang
,
Carbon
147
,
348
(
2019
).
20.
M. F.
Wang
,
A.
Mandelis
,
A.
Melnikov
, and
C. H.
Wang
,
J. Appl. Phys.
127
,
195101
(
2020
).
21.
C.
Wallbrink
,
S. A.
Wade
, and
R.
Jones
,
J. Appl. Phys.
101
,
104907
(
2007
).
22.
K.
Chatterjee
and
S.
Tuli
,
IEEE Trans. Instrum. Meas.
61
(
4
),
1079
(
2012
).
23.
S.
Laureti
,
S.
Sfarra
,
H.
Malekmohammadi
,
P.
Burrascano
,
D. A.
Hutchins
,
L.
Senni
,
G.
Silipigni
,
X. P. V.
Maldague
, and
M.
Ricci
,
NDT E Int.
98
,
147
(
2018
).
24.
D.
Roy
and
S.
Tuli
,
IEEE Trans. Instrum. Meas.
66
(
10
),
2658
(
2017
).
25.
N.
Tabatabaei
and
A.
Mandelis
,
Rev. Sci. Instrum.
80
,
034902
(
2009
).
26.
R.
Mulaveesala
and
S.
Tuli
,
Appl. Phys. Lett.
89
,
191913
(
2006
).
27.
N.
Tabatabaei
,
A.
Mandelis
, and
B. T.
Amaechi
,
Appl. Phys. Lett.
98
,
163706
(
2011
).
28.
N.
Tabatabaei
and
A.
Mandelis
,
Phys. Rev. Lett.
107
,
165901
(
2011
).
29.
F.
Wang
,
Y. H.
Wang
,
J. Y.
Liu
, and
Y.
Wang
,
IEEE Trans. Indust. Inform.
16
(
8
),
5160
(
2020
).
30.
F.
Wang
,
J. Y.
Liu
,
P.
Song
,
M. J.
Chen
,
J. L.
Gong
, and
Y.
Wang
,
Mech. Syst. Signal Process.
163
,
108164
(
2022
).
31.
F.
Wang
,
Y. H.
Wang
,
J. Y.
Liu
, and
Y.
Wang
,
Opt. Express
26
(
17
),
21403
21417
(
2018
).
32.
F.
Wang
,
L. J.
Wu
,
X. C.
Wu
,
Y. M.
Liang
,
J. Y.
Liu
,
M. J.
Chen
, and
Y.
Wang
,
Measurement
188
,
110517
(
2022
).
33.
S.
Hedayatrasa
,
G.
Poelman
,
J.
Segers
,
W.
Van Paepegem
, and
M.
Kersemans
,
Opt. Lasers Eng.
138
,
106411
(
2021
).
34.
S.
Kaiplavil
and
A.
Mandelis
,
Nat. Photonics
8
,
635
(
2014
).
35.
P.
Tavakolian
,
K.
Sivagurunathan
, and
A.
Mandelis
,
J. Appl. Phys.
122
,
023103
(
2017
).
36.
Y.
Wei
,
A.
Melnikov
,
M.
Wang
, and
A.
Mandelis
,
J. Appl. Phys.
127
,
245102
(
2020
).
37.
Z. T.
Luo
,
H.
Luo
,
S.
Wang
,
F. L.
Mao
,
G. D.
Yin
, and
H.
Zhang
,
Compos. Struct.
282
,
115069
(
2022
).
38.
V.
Arora
and
R.
Mulaveesala
,
Opt. Lasers Eng.
93
,
36
(
2017
).
39.
S.
Laureti
,
G.
Silipigni
,
L.
Senni
,
R.
Tomasello
,
P.
Burrascano
, and
M.
Ricci
,
Appl. Opt.
57
(
18/20
),
D32
(
2018
).
40.
D.
Roy
,
P.
Babu
, and
S.
Tuli
,
IEEE Trans. Instrum. Meas.
68
(
11
),
4550
(
2019
).
41.
K.
Chatterjee
,
D.
Roy
, and
S.
Tuli
,
Infrared Phys. Technol.
82
,
75
(
2017
).
42.
G.
Silipigni
,
P.
Burrascano
,
D. A.
Hutchins
,
S.
Laureti
,
R.
Petrucci
,
L.
Senni
,
L.
Torre
, and
M.
Ricci
,
NDT E Int.
87
,
100
(
2017
).
43.
Z. T.
Luo
,
J.
Wang
,
F. L.
Mao
,
L.
Shen
,
S.
Wang
, and
H.
Zhang
,
J. Appl. Phys.
127
,
123102
(
2020
).
44.
X. D.
Xiao
,
S. Y.
Li
,
S. W.
Peng
,
D. X.
Wu
,
X. X.
Xue
,
X. P.
Zheng
, and
B. K.
Zhou
,
Opt. Express
26
,
33783
(
2018
).
45.
F.
Wang
,
J. Y.
Liu
,
L. X.
Liu
,
L. X.
Xu
,
Y. H.
Wang
,
M. J.
Chen
, and
Y.
Wang
,
Opt. Lasers Eng.
149
,
106830
(
2022
).
46.
S.
Hedayatrasa
,
J.
Segers
,
J. A.
Calderon Tellez
,
W.
Van Paepegem
, and
M.
Kersemans
,
14th Quantitative InfraRed Thermography Conference, Berlin, Germany
(
2018
).
You do not currently have access to this content.