The concept of multifunctional reflection-mode gratings that are based on rod-type photonic crystals (PhCs) with C2 symmetry is introduced. The specific modal properties lead to the vanishing dependence of the first-negative-order maximum on the angle of incidence and the nearly sinusoidal redistribution of the incident-wave energy between zero order (specular reflection) and first negative diffraction order (deflection) at frequency variation. These features are key enablers of diverse functionalities and the merging of different functionalities into one structure. The elementary functionalities, of which multifunctional scenarios can be designed, include but are not restricted to multiband spatial filtering, multiband splitting, retroreflection, and demultiplexing. The proposed structures are capable of multifunctional operation in the case of a single polychromatic incident wave or multiple mono-/polychromatic waves incident at different angles. The generalized demultiplexing is possible in the case of several polychromatic waves. The aforementioned deflection properties yield merging demultiplexing with splitting in one functionality. In turn, it may contribute to more complex multifunctional scenarios. Finally, the proposed PhC gratings are studied in transmissive configuration, in which they show some unusual properties.

1.
D.
Maystre
,
Opt. Express
8
,
209
216
(
2001
).
2.
S.
Collardey
,
A.-C.
Tarot
,
P.
Pouliguen
, and
K.
Mahdjoubi
,
Microwave Opt. Technol. Lett.
44
,
546
550
(
2005
).
3.
A. E.
Serebryannikov
,
T.
Magath
, and
K.
Schuenemann
,
Phys. Rev. E
74
,
066607
(
2006
).
4.
A.
Mandatori
,
M.
Bertolotti
, and
C.
Sibilia
,
J. Opt. Soc. Am. B
24
,
685
690
(
2007
).
5.
A. E.
Serebryannikov
,
K. B.
Alici
,
T.
Magath
,
A. O.
Cakmak
, and
E.
Ozbay
,
Phys. Rev. A
86
,
053835
(
2012
).
6.
A. E.
Serebryannikov
,
E.
Colak
,
T.
Magath
, and
E.
Ozbay
,
J. Opt. Soc. Am. A
33
,
2450
2458
(
2016
).
7.
P.
Rodriguez-Ulibarri
,
M.
Beruete
,
M.
Navarro-Cia
, and
A. E.
Serebryannikov
,
Phys. Rev. B
88
,
165137
(
2013
).
8.
A.
Hessel
,
J.
Schmoys
, and
D.
Tseng
,
J. Opt. Soc. Am.
65
,
380
384
(
1975
).
9.
J. W.
Heath
and
E. V.
Jull
,
J. Opt. Soc. Am.
68
,
1211
1217
(
1978
).
10.
E. V.
Jull
,
J. W.
Heath
, and
G. R.
Ebbeson
,
J. Opt. Soc. Am.
67
,
557
559
(
1977
).
11.
W.
Chen
,
N. C.
Beaulieu
,
D. G.
Michelson
, and
E. V.
Jull
,
IEEE Trans. Ant. Propag.
61
,
2342
2347
(
2013
).
12.
M.
Memarian
,
X.
Li
,
Y.
Morimoto
, and
T.
Itoh
,
Sci. Rep.
7
,
42286
(
2017
).
13.
C.
Ribot
,
M. S. L.
Lee
,
S.
Collin
et al.,
Adv. Opt. Mater.
1
,
489
493
(
2013
).
14.
O.
Hemmatyar
,
M. A.
Abbassi
,
B.
Rahmani
, and
M.
Memarian
,
IEEE Trans. Ant. Propag.
69
,
379
386
(
2021
).
15.
A. E.
Serebryannikov
,
Ph.
Lalanne
,
A. Y.
Petrov
, and
E.
Ozbay
,
Opt. Lett.
39
,
6193
6196
(
2014
).
16.
J.
Jung
,
H.
Park
,
J.
Park
,
T.
Chang
, and
J.
Shin
,
Nanophotonics
9
,
3165
3196
(
2020
).
17.
J. R.
Cheng
,
S.
Inampudi
, and
H.
Mosallaei
,
Sci. Rep.
7
,
12228
(
2017
).
18.
M.
Aalizadeh
,
A. E.
Serebryannikov
,
E.
Ozbay
, and
G. A. E.
Vandenbosch
,
Nanophotonics
9
,
4589
4600
(
2020
).
19.
J.
Luan
,
S.
Yang
,
D. M.
Liu
, and
M. M.
Zhang
,
Opt. Express
28
,
3732
3744
(
2020
).
20.
H.
Kwon
,
E.
Arbabi
,
S. M.
Kamali
,
M. S.
Faraji-Dana
, and
A.
Faraon
,
Nat. Photon.
14
,
109
114
(
2020
).
21.
A. E.
Serebryannikov
,
A. O.
Cakmak
, and
E.
Ozbay
,
Opt. Express
20
,
14980
14990
(
2012
).
22.
D.
Sell
,
J.
Yang
,
S.
Doshay
, and
J. A.
Fan
,
Adv. Opt. Mat.
5
,
1700645
(
2017
).
23.
V.
Vashistha
,
M.
Krawczyk
,
A. E.
Serebryannikov
, and
G. A. E.
Vandenbosch
,
Opt. Lett.
44
,
4725
4728
(
2019
).
24.
X.
Wang
,
J.
Ding
,
B.
Zheng
,
S.
An
,
G.
Zhai
, and
H.
Zhang
,
Sci. Rep.
8
,
1876
(
2018
).
25.
Z.-L.
Deng
,
Y.
Cao
,
X.
Li
, and
G. P.
Wang
,
Photon. Res.
6
,
443
450
(
2018
).
26.
T.
Cai
,
G.-M.
Wang
,
H.-X.
Xu
,
S.-W.
Tang
,
H.
Li
, and
J.-G.
Liang
,
Ann. Phys. (Berlin)
530
,
1700321
(
2017
).
27.
T.
Cai
,
S.
Tang
,
G.
Wang
,
H.
Xu
,
S.
Sun
,
Q.
He
, and
L.
Zhou
,
Adv. Opt. Mat.
5
,
1600506
(
2017
).
28.
D.
Wen
,
F.
Yue
,
G.
Li
et al.,
Nat. Commun.
6
,
8241
(
2015
).
29.
M.
Mutlu
,
S.
Cakmakyapan
,
A. E.
Serebryannikov
, and
E.
Ozbay
,
Phys. Rev. B
87
,
205123
(
2013
).
30.
E.
Colak
,
A. E.
Serebryannikov
,
P. V.
Usik
, and
E.
Ozbay
,
J. Appl. Phys.
119
,
193108
(
2016
).
31.
N.
Mahmood
,
I.
Kim
,
M. Q.
Mehmood
et al.,
Nanoscale
10
,
18323
18330
(
2018
).
32.
M.
Veysi
,
C.
Guclu
,
O.
Boyraz
, and
F.
Capolino
,
J. Opt. Soc. Am. B
32
,
318
323
(
2015
).
33.
M.
Ayre
,
T. J.
Karle
,
L.
Wu
,
T.
Davies
, and
T. F.
Krauss
,
IEEE J. Select. Areas Commun.
23
,
1390
1395
(
2005
).
34.
J.
Shi
,
M. E.
Pollard
,
C. A.
Angeles
,
R.
Chen
,
J. C.
Gates
, and
M. D. B.
Charlton
,
Sci. Rep.
7
,
1812
(
2017
).
35.
A. E.
Serebryannikov
,
A. Y.
Petrov
, and
E.
Ozbay
,
Appl. Phys. Lett.
94
,
181101
(
2009
).
36.
K.
Staliunas
and
V. J.
Sánchez-Morcillo
,
Phys. Rev. A
79
,
053807
(
2009
).
37.
A.-L.
Fehrembach
,
A.
Talneau
,
O.
Boyko
,
F.
Lemarchand
, and
A.
Sentenac
,
Opt. Lett.
32
,
2269
2271
(
2007
).
38.
R.
Rabady
and
I.
Avrutsky
,
Opt. Lett.
29
,
605
607
(
2004
).
39.
W.-N.
Liu
,
R.
Chen
,
W.-Y.
Shi
,
K.-B.
Zeng
,
F.-L.
Zhao
, and
J.-W.
Dong
,
Nanophotonics
9
,
3443
3450
(
2020
).
40.
Z.-L.
Deng
,
S.
Zhang
, and
G. P.
Wang
,
Opt. Express
24
,
23118
23128
(
2016
).
41.
Y. J.
Lee
,
J.
Yeo
,
R.
Mittra
, and
W. S.
Park
,
IEEE Trans. Ant. Propag.
53
,
224
235
(
2005
).
42.
H.
Tanaka
,
I.
Takai
,
H.
Fujikawa
, and
H.
Iizuka
,
J. Lightwave Technol.
36
,
2517
2523
(
2018
).
43.
Q.
Qian
,
S.
Ti
, and
C.
Wang
,
Opt. Lett.
44
,
3984
3987
(
2019
).
44.
S.
Gawali
,
D.
Gailevičius
,
G.
Garre-Werner
,
V.
Purlys
,
C.
Cojocaru
,
J.
Trull
,
J.
Montiel-Ponsoda
, and
K.
Staliunas
,
Appl. Phys. Lett.
115
,
141104
(
2019
).
45.
A. Y.
Piggott
,
J.
Lu
,
K. G.
Lagoudakis
,
J.
Petykiewicz
,
T. M.
Babinec
, and
J.
Vuckovic
,
ACS Photon.
5
,
301
305
(
2018
).
46.
C.
Jin
,
S.
Fan
,
S.
Han
, and
D.
Zhang
,
IEEE J. Quant. Electron.
39
,
160
165
(
2003
).
47.
T.
Matsumoto
,
S.
Fujita
, and
T.
Baba
,
Opt. Express
13
,
10768
10776
(
2005
).
48.
M.
Koshiba
,
J. Lightwave Technol.
19
,
1970
1975
(
2001
).
49.
S.
Pahlavan
and
V.
Ahmadi
,
IEEE Photon. Technol. Lett.
29
,
511
514
(
2017
).
50.
U. G.
Yasa
,
M.
Turduev
,
I. H.
Giden
, and
H.
Kurt
,
J. Lightwave Technol.
35
,
1677
1683
(
2017
).
51.
Y.
Shi
,
D.
Dai
, and
S.
He
,
IEEE Photon. Technol. Lett.
19
,
825
827
(
2007
).
52.
M.
Sesay
,
X.
Jin
, and
Z.
Ouyang
,
J. Opt. Soc. Am. B
30
,
2043
2047
(
2013
).
53.
B. A.
Slovick
,
Y.
Zhou
,
Z. G.
Yu
,
I. I.
Kravchenko
,
D. P.
Briggs
,
P.
Moitra
,
S.
Krishnamurthy
, and
J.
Valentine
,
Phil. Trans. Royal Soc. A
375
,
20160072
(
2017
).
54.
A.
Ozer
,
N.
Yilmaz
,
H.
Kocer
, and
H.
Kurt
,
Opt. Lett.
43
,
4350
4353
(
2018
).
55.
J.
Zheng
,
C.
Zhou
,
J.
Feng
,
H.
Cao
, and
P.
Lu
,
Opt. Commun.
282
,
3069
3075
(
2009
).
56.
J.
Feng
,
C.
Zhou
,
J.
Zheng
,
H.
Cao
, and
P.
Lv
,
Appl. Opt.
48
,
2697
2701
(
2009
).
57.
D.
Ott
,
I.
Divliansky
,
B.
Anderson
,
G.
Venus
, and
L.
Glebov
,
Opt. Express
21
,
29620
29627
(
2013
).
58.
S.
Breer
and
K.
Buse
,
Appl. Phys. B
66
,
339
345
(
1998
).
59.
T.
Magath
and
A. E.
Serebryannikov
,
J. Opt. Soc. Am. A
22
,
2405
2418
(
2005
).
60.
M.
Gumus
,
I. H.
Giden
, and
H.
Kurt
,
Opt. Lett.
43
,
2555
2558
(
2018
).
61.
S.
Nojima
and
T.
Mizoi
,
Phys. Rev. B
71
,
193106
(
2005
).
62.
M.
Noori
,
M.
Soroosh
, and
H.
Baghban
,
Ann. Phys. (Berlin)
530
,
1700049
(
2018
).
63.
M.
Lester
,
D. C.
Skigin
, and
R. A.
Depine
,
Appl. Opt.
47
,
1711
1717
(
2008
).
64.
M.
Lester
,
D. C.
Skigin
, and
R. A.
Depine
,
J. Opt. A: Pure Appl. Opt.
11
,
045705
(
2009
).
65.
Y.
Jin
and
S.
He
,
Phys. Rev. B
75
,
195126
(
2007
).
66.
A. F.
Peterson
,
S. L.
Ray
, and
R.
Mittra
,
Computational Methods for Electromagnetics
(
IEEE Press
,
1998
).
67.
Electromagnetic Theory of Gratings, edited by R. Petit (Springer, Berlin, 1980).
68.
P.-Y.
Wang
,
R.
Herrero
,
M.
Botey
,
Y.-C.
Cheng
, and
K.
Staliunas
,
Phys. Rev. A
102
,
013517
(
2020
).
69.
L.
Maigyte
and
K.
Staliunas
,
Appl. Phys. Rev.
2
,
011102
(
2015
).
70.
A.
Arbabi
,
E.
Arbabi
,
Y.
Horie
,
S. M.
Kamali
, and
A.
Faraon
,
Nat. Photon.
11
,
415
420
(
2017
).
71.
Y. G.
Ma
,
C. K.
Ong
,
T.
Tyc
, and
U.
Leonhardt
,
Nat. Mater.
8
,
639
642
(
2009
).
72.
Q.
Wang
,
L.
Zhou
,
P.
Wan
et al.,
Opt. Express
28
,
30606
30615
(
2020
).
73.
M. M.
Beaky
,
J. B.
Burk
,
H. O.
Everitt
,
M. A.
Haider
, and
S.
Venakides
,
IEEE Trans. Microwave Theory Tech.
47
,
2085
2091
(
1999
).
74.
X.
Chen
,
C.
Chardin
,
K.
Makles
,
C.
Caër
,
S.
Chua
,
R.
Braive
,
I.
Robert-Philip
,
T.
Briant
,
P.-F.
Cohadon
,
A.
Heidmann
,
T.
Jacqmin
, and
S.
Deléglise
,
Light Sci. Appl.
6
,
e16190
(
2017
).
75.
Photonic Crystals: Advances in Design, Fabrication, and Characterization, edited by K. Busch, S. Lölkes, R. B. Wehrspohn, and H. Föll (Wiley, 2006).
76.
Photonic Crystals: Physics, Fabrication and Applications, edited by K. Inoue and K. Ohtaka (Springer, Berlin, 2004).
You do not currently have access to this content.