The precise atomic structure of a metal contact significantly affects the performance of nanoscale electronic devices. We use an accurate, DFT-based non-equilibrium Green’s function method to evaluate various metal contacts with graphene or graphene nanoribbons. For surface metal contacts not chemically bound to graphene, Ti contacts have lower resistance than those of Au, Ca, Ir, Pt, and Sr. However, as an edge contact, Ti has larger resistance than Au. Bridging O atoms at Ti and Au edge contacts lowers the transmission by over 30%.

1.
P. R.
Wallace
, “
The band theory of graphite
,”
Phys. Rev.
71
, 622 (
1947
).
2.
K. I.
Bolotin
,
K. J.
Sikes
,
Z.
Jiang
,
M.
Klima
,
G.
Fudenberg
,
J.
Hone
,
P.
Kim
, and
H. L.
Stormer
, “
Ultrahigh electron mobility in suspended graphene
,”
Solid State Commun.
146
,
351
(
2008
).
3.
F.
Giubileo
and
A.
Di Bartolomeo
, “
The role of contact resistance in graphene field-effect devices
,”
Prog. Surf. Sci.
92
,
143
(
2017
).
4.
J. M.
Marmolejo-Tejada
and
J.
Velasco-Medina
, “
Review on graphene nanoribbon devices for logic applications
,”
Microelectron. J.
48
,
18
(
2016
).
5.
Q.
Ran
,
M.
Gao
,
X.
Guan
,
Y.
Wang
, and
Z.
Yu
, “
First-principles investigation on bonding formation and electronic structure of metal-graphene contacts
,”
Appl. Phys. Lett.
94
,
103511
(
2009
).
6.
S.
Russo
,
M. F.
Craciun
,
M.
Yamamoto
,
A. F.
Morpurgo
, and
S.
Tarucha
, “
Contact resistance in graphene-based devices
,”
Physica E
42
,
677
(
2010
).
7.
E.
Watanabe
,
A.
Conwill
,
D.
Tsuya
, and
Y.
Koide
, “
Low contact resistance metals for graphene based devices
,”
Diamond Relat. Mater.
24
,
171
(
2012
).
8.
B.
Ma
,
C.
Gong
,
Y.
Wen
,
R.
Chen
,
K.
Cho
, and
B.
Shan
, “
Modulation of contact resistance between metal and graphene by controlling the graphene edge, contact area, and point defects: An ab initio study
,”
J. Appl. Phys.
115
,
183708
(
2014
).
9.
X.
Ji
,
J.
Zhang
,
Y.
Wang
,
H.
Qian
, and
Z.
Yu
, “
A theoretical model for metal–graphene contact resistance using a DFT–NEGF method
,”
Phys. Chem. Chem. Phys.
15
,
17883
(
2013
).
10.
M.
Ghatge
and
M.
Shrivastava
, “
Physical insights on the ambiguous metal–graphene interface and proposal for improved contact resistance
,”
IEEE Trans. Electron Devices
62
,
4139
(
2015
).
11.
Q.
Tang
,
C. X.
Zhang
, and
C.
He
, “
Charge transport properties of graphene: Effects of Cu-based gate electrode
,”
J. Appl. Phys.
7
, 035101 (
2016
).
12.
T.
Cusati
,
G.
Fiori
,
A.
Gahoi
,
V.
Passi
,
M. C.
Lemme
,
A.
Fortunelli
, and
G.
Iannaccone
, “
Electrical properties of graphene-metal contacts
,”
Sci. Rep.
7
,
1
(
2017
).
13.
F.
Xia
,
V.
Perebeinos
,
Y.
Lin
,
Y.
Wu
, and
P.
Avouris
, “
The origins and limits of metal–graphene junction resistance
,”
Nat. Nanotechnol.
6
,
179
(
2011
).
14.
C.
Gong
,
S.
McDonnell
,
X.
Qin
,
A.
Azcatl
,
H.
Dong
,
Y. J.
Chabal
,
K.
Cho
, and
R. M.
Wallace
, “
Realistic metal–graphene contact structures
,”
ACS Nano
8
,
642
(
2014
).
15.
Y.
Matsuda
,
W.-Q.
Deng
, and
W. A.
Goddard
, “
Contact resistance for ‘end-contacted’ metal−graphene and metal−nanotube interfaces from quantum mechanics
,”
J. Phys. Chem. C
114
,
17845
(
2010
).
16.
B.
Kretz
,
C. S.
Pedersen
,
D.
Stradi
,
M.
Brandbyge
, and
A.
Garcia-Lekue
, “
Atomistic insight into the formation of metal-graphene one-dimensional contacts
,”
Phys. Rev. Appl.
10
,
024016
(
2018
).
17.
V.
Passi
,
A.
Gahoi
,
E. G.
Marin
,
T.
Cusati
,
A.
Fortunelli
,
G.
Iannaccone
,
G.
Fiori
, and
M. C.
Lemme
, “
Ultralow specific contact resistivity in metal–graphene junctions via contact engineering
,”
Adv. Mater. Interfaces
6
,
1801285
(
2019
).
18.
L.
Wang
,
I.
Meric
,
P. Y.
Huang
,
Q.
Gao
,
Y.
Gao
,
H.
Tran
,
T.
Taniguchi
,
K.
Watanabe
,
L. M.
Campos
,
D. A.
Muller
,
J.
Guo
,
P.
Kim
,
J.
Hone
,
K. L.
Shepard
, and
C. R.
Dean
, “
One-dimensional electrical contact to a two-dimensional material
,”
Science
342
,
614
(
2013
).
19.
J. A.
Robinson
,
M.
LaBella
,
M.
Zhu
,
M.
Hollander
,
R.
Kasarda
,
Z.
Hughes
,
K.
Trumbull
,
R.
Cavalero
, and
D.
Snyder
, “
Contacting graphene
,”
Appl. Phys. Lett.
98
,
053103
(
2011
).
20.
Y.-W.
Son
,
M. L.
Cohen
, and
S. G.
Louie
, “
Energy gaps in graphene nanoribbons
,”
Phys. Rev. Lett.
97
, 216803 (
2006
).
21.
M. Y.
Han
,
B.
Özyilmaz
,
Y.
Zhang
, and
P.
Kim
, “
Energy band-gap engineering of graphene nanoribbons
,”
Phys. Rev. Lett.
98
, 206805 (
2007
).
22.
J.
Jiang
,
W.
Lu
, and
J.
Bernholc
, “
Edge states and optical transition energies in carbon nanoribbons
,”
Phys. Rev. Lett.
101
,
246803
(
2008
).
23.
A.
Naeemi
and
J. D.
Meindl
, “
Compact physics-based circuit models for graphene nanoribbon interconnects
,”
IEEE Trans. Electron Devices
56
,
1822
(
2009
).
24.
H.
Liu
,
H.
Kondo
, and
T.
Ohno
, “
Contact effects of nickel and copper on electron transport through graphene
,”
Phys. Rev. B
86
,
155434
(
2012
).
25.
C.
Archambault
and
A.
Rochefort
, “
States modulation in graphene nanoribbons through metal contacts
,”
ACS Nano
7
,
5414
(
2013
).
26.
J.
Taylor
,
H.
Guo
, and
J.
Wang
, “
Ab initio modeling of quantum transport properties of molecular electronic devices
,”
Phys. Rev. B
63
,
245407
(
2001
).
27.
M.
Brandbyge
,
J.-L.
Mozos
,
P.
Ordejón
,
J.
Taylor
, and
K.
Stokbro
, “
Density-functional method for nonequilibrium electron transport
,”
Phys. Rev. B
65
,
165401
(
2002
).
28.
E. L.
Briggs
,
D. J.
Sullivan
, and
J.
Bernholc
, “
Real-space multigrid-based approach to large-scale electronic structure calculations
,”
Phys. Rev. B
54
,
14362
(
1996
).
29.
M. B.
Nardelli
,
J.-L.
Fattebert
, and
J.
Bernholc
, “
O (N) real-space method for ab initio quantum transport calculations: Application to carbon nanotube–metal contacts
,”
Phys. Rev. B
64
,
245423
(
2001
).
30.
W.
Lu
,
V.
Meunier
, and
J.
Bernholc
, “
Nonequilibrium quantum transport properties of organic molecules on silicon
,”
Phys. Rev. Lett.
95
, 206805 (
2005
).
31.
See http://www.rmgdft.org for more information about code RMG (accessed 7 March 2022).
32.
D. R.
Hamann
, “
Optimized norm-conserving vanderbilt pseudopotentials
,”
Phys. Rev. B
88
,
085117
(
2013
).
33.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
,
3865
(
1996
).
34.
K. H.
Khoo
,
W. S.
Leong
,
J. T. L.
Thong
, and
S. Y.
Quek
, “
Origin of contact resistance at ferromagnetic metal–graphene interfaces
,”
ACS Nano
10
,
11219
(
2016
).
35.
C.
Busse
,
P.
Lazić
,
R.
Djemour
,
J.
Coraux
,
T.
Gerber
,
N.
Atodiresei
,
V.
Caciuc
,
R.
Brako
,
A. T.
N’Diaye
,
S.
Blügel
,
J.
Zegenhagen
, and
T.
Michely
, “
Graphene on Ir(111): Physisorption with chemical modulation
,”
Phys. Rev. Lett.
107
,
036101
(
2011
).
36.
P.
Giannozzi
,
S.
Baroni
,
N.
Bonini
,
M.
Calandra
,
R.
Car
,
C.
Cavazzoni
,
D.
Ceresoli
,
G. L.
Chiarotti
,
M.
Cococcioni
,
I.
Dabo
,
A.
Dal Corso
,
S.
de Gironcoli
,
S.
Fabris
,
G.
Fratesi
,
R.
Gebauer
,
U.
Gerstmann
,
C.
Gougoussis
,
A.
Kokalj
,
M.
Lazzeri
,
L.
Martin-Samos
,
N.
Marzari
,
F.
Mauri
,
R.
Mazzarello
,
S.
Paolini
,
A.
Pasquarello
,
L.
Paulatto
,
C.
Sbraccia
,
S.
Scandolo
,
G.
Sclauzero
,
A. P.
Seitsonen
,
A.
Smogunov
,
P.
Umari
, and
R. M.
Wentzcovitch
, “
QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials
,”
J. Phys.: Condens. Matter
21
,
395502
(
2009
).
37.
W.
Li
,
C. A.
Hacker
,
G.
Cheng
,
Y.
Liang
,
B.
Tian
,
A. R.
Hight Walker
,
C. A.
Richter
,
D. J.
Gundlach
,
X.
Liang
, and
L.
Peng
, “
Highly reproducible and reliable metal/graphene contact by ultraviolet-ozone treatment
,”
J. Appl. Phys.
115
,
114304
(
2014
).
38.
V.
Passi
,
A.
Gahoi
,
J.
Ruhkopf
,
S.
Kataria
,
F.
Vaurette
,
E.
Pallecchi
,
H.
Happy
, and
M. C.
Lemme
, “Contact resistance study of ‘edge-contacted’ metal-graphene interfaces,” in
2016 46th European Solid-State Device Research Conference (ESSDERC)
(IEEE,
2016
), pp.
236
239
.
You do not currently have access to this content.