Hafnium oxide non-volatile memories have shown promise as an artificial synapse in neuromorphic computing architectures. However, there is still a need to fundamentally understand how to reliably control the analog resistance change induced by oxygen ions that partially rupture or re-form the conductive filament. In this work, the impact of measurement conditions (pulse amplitude and pulse width) and titanium dopants on the analog resistance change of atomic layer deposited hafnium oxide memristor synapses are studied. A lower pulse amplitude improves the linearity of resistance change as a function of the number of pulses but results in a smaller memory window. The addition of titanium dopants does not substantively change the analog resistance modulation of hafnium oxide. Density functional theory calculations show that titanium strongly impacts oxygen ion motion in the HfxTiyOz matrix but does not impact significantly in the HfTi metallic filament. This study demonstrates that the analog characteristic of HfxTiyOz artificial synapses is largely independent of the titanium doped bulk oxide since the resistance change is primarily controlled by the HfTi metallic conducting filament.

1.
B.
De Salvo
,
C.
Gerardi
,
S.
Lombardo
,
T.
Baron
,
L.
Perniola
,
D.
Mariolle
,
P.
Mur
,
A.
Toffoli
,
M.
Gely
, and
M.
Semeria
, “
How far will silicon nanocrystals push the scaling limits of NVMs technologies
,” in
IEEE International Electron Devices Meeting 2003
(
IEEE
,
2003
), pp.
26.1.1
26.1.4
.
2.
L.
Wang
,
C.
Yang
,
J.
Wen
, and
S.
Gai
, “
Emerging nonvolatile memories to go beyond scaling limits of conventional CMOS nanodevices
,”
J. Nanomater.
2014
,
927696
(
2014
).
3.
J. J.
Yang
,
M. D.
Pickett
,
X.
Li
,
D. A. A.
Ohlberg
,
D. R.
Stewart
, and
R. S.
Williams
, “
Memristive switching mechanism for metal/oxide/metal nanodevices
,”
Nat. Nanotechnol.
3
(
7
),
429
433
(
2008
).
4.
J. J.
Yang
,
D. B.
Strukov
, and
D. R.
Stewart
, “
Memristive devices for computing
,”
Nat. Nanotechnol.
8
(
1
),
13
24
(
2013
).
5.
A.
Sebastian
,
T.
Tuma
,
N.
Papandreou
,
M.
Le Gallo
,
L.
Kull
,
T.
Parnell
, and
E.
Eleftheriou
, “
Temporal correlation detection using computational phase-change memory
,”
Nat. Commun.
8
(
1
),
1
10
(
2017
).
6.
A.
Sebastian
,
M.
Le Gallo
,
R.
Khaddam-Aljameh
, and
E.
Eleftheriou
, “
Memory devices and applications for in-memory computing
,”
Nat. Nanotechnol.
15
(
7
),
529
544
(
2020
).
7.
Y.
Zhang
,
Z.
Wang
,
J.
Zhu
,
Y.
Yang
,
M.
Rao
,
W.
Song
,
Y.
Zhuo
,
X.
Zhang
,
M.
Cui
, and
L.
Shen
, “
Brain-inspired computing with memristors: Challenges in devices, circuits, and systems
,”
Appl. Phys. Rev.
7
(
1
),
011308
(
2020
).
8.
A.
Mehonic
,
A.
Sebastian
,
B.
Rajendran
,
O.
Simeone
,
E.
Vasilaki
, and
A. J.
Kenyon
, “
Memristors—from in-memory computing, deep learning acceleration, and spiking neural networks to the future of neuromorphic and bio-inspired computing
,”
Adv. Intell. Syst.
2
(
11
),
2000085
(
2020
).
9.
D.
Ielmini
and
S.
Ambrogio
, “
Emerging neuromorphic devices
,”
Nanotechnology
31
(
9
),
092001
(
2020
).
10.
D.
Ielmini
, “
Brain-inspired computing with resistive switching memory (RRAM): Devices, synapses and neural networks
,”
Microelectron. Eng.
190
,
44
53
(
2018
).
11.
P. A.
Merolla
,
J. V.
Arthur
,
R.
Alvarez-Icaza
,
A. S.
Cassidy
,
J.
Sawada
,
F.
Akopyan
,
B. L.
Jackson
,
N.
Imam
,
C.
Guo
, and
Y.
Nakamura
, “
A million spiking-neuron integrated circuit with a scalable communication network and interface
,”
Science
345
(
6197
),
668
673
(
2014
).
12.
G.
Indiveri
and
S.-C.
Liu
, “
Memory and information processing in neuromorphic systems
,”
Proc. IEEE
103
(
8
),
1379
1397
(
2015
).
13.
D.
Ielmini
and
H.-S. P.
Wong
, “
In-memory computing with resistive switching devices
,”
Nat. Electron.
1
(
6
),
333
343
(
2018
).
14.
J.
Zhu
,
T.
Zhang
,
Y.
Yang
, and
R.
Huang
, “
A comprehensive review on emerging artificial neuromorphic devices
,”
Appl. Phys. Rev.
7
(
1
),
011312
(
2020
).
15.
N. K.
Upadhyay
,
H.
Jiang
,
Z.
Wang
,
S.
Asapu
,
Q.
Xia
, and
J.
Joshua Yang
, “
Emerging memory devices for neuromorphic computing
,”
Adv. Mater. Technol.
4
(
4
),
1800589
(
2019
).
16.
S.
Lawrence
,
A.
Yandapalli
, and
S.
Rao
, “
Matrix multiplication by neuromorphic computing
,”
Neurocomputing
431
,
179
187
(
2021
).
17.
H.
Abbas
,
Y.
Abbas
,
S. N.
Truong
,
K.-S.
Min
,
M. R.
Park
,
J.
Cho
,
T.-S.
Yoon
, and
C. J.
Kang
, “
A memristor crossbar array of titanium oxide for non-volatile memory and neuromorphic applications
,”
Semicond. Sci. Technol.
32
(
6
),
065014
(
2017
).
18.
L.
Chua
,
G. C.
Sirakoulis
, and
A.
Adamatzky
,
Handbook of Memristor Networks
(
Springer Nature
,
2019
).
19.
Z.
Wang
,
S.
Joshi
,
S. E.
Savel’ev
,
H.
Jiang
,
R.
Midya
,
P.
Lin
,
M.
Hu
,
N.
Ge
,
J. P.
Strachan
, and
Z.
Li
, “
Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing
,”
Nat. Mater.
16
(
1
),
101
108
(
2017
).
20.
T.
Fu
,
X.
Liu
,
H.
Gao
,
J. E.
Ward
,
X.
Liu
,
B.
Yin
,
Z.
Wang
,
Y.
Zhuo
,
D. J.
Walker
, and
J. J.
Yang
, “
Bioinspired bio-voltage memristors
,”
Nat. Commun.
11
(
1
),
1
10
(
2020
).
21.
P.
Mazumder
,
S. M.
Kang
, and
R.
Waser
, “
Memristors devices, models, and applications
,”
Proc. IEEE
100
(
6
),
1911
1919
(
2012
).
22.
M. A.
Zidan
,
J. P.
Strachan
, and
W. D.
Lu
, “
The future of electronics based on memristive systems
,”
Nat. Electron.
1
(
1
),
22
29
(
2018
).
23.
S.
Yu
,
Y.
Wu
,
R.
Jeyasingh
,
D.
Kuzum
, and
H.-S. P.
Wong
, “
An electronic synapse device based on metal oxide resistive switching memory for neuromorphic computation
,”
IEEE Trans. Electron Devices
58
(
8
),
2729
2737
(
2011
).
24.
S.
Dirkmann
,
J.
Kaiser
,
C.
Wenger
, and
T.
Mussenbrock
, “
Filament growth and resistive switching in hafnium oxide memristive devices
,”
ACS Appl. Mater. Interfaces
10
(
17
),
14857
14868
(
2018
).
25.
S.
Kumar
,
Z.
Wang
,
X.
Huang
,
N.
Kumari
,
N.
Davila
,
J. P.
Strachan
,
D.
Vine
,
A. L. D.
Kilcoyne
,
Y.
Nishi
, and
R. S.
Williams
, “
Oxygen migration during resistance switching and failure of hafnium oxide memristors
,”
Appl. Phys. Lett.
110
(
10
),
103503
(
2017
).
26.
F.
Cüppers
,
S.
Menzel
,
C.
Bengel
,
A.
Hardtdegen
,
M.
Von Witzleben
,
U.
Böttger
,
R.
Waser
, and
S.
Hoffmann-Eifert
, “
Exploiting the switching dynamics of HfO2-based ReRAM devices for reliable analog memristive behavior
,”
APL Mater.
7
(
9
),
091105
(
2019
).
27.
M.
Yin
,
Y.
Yang
,
Z.
Wang
,
T.
Zhang
,
Y.
Fang
,
X.
Yang
,
Y.
Cai
, and
R.
Huang
, “
TaOx based memristors with recessed bottom electrodes and built-in ion concentration gradient as electronic synapses
,” in
2016 13th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT)
(
IEEE
,
2016
), pp.
1113
1115
.
28.
S. H.
Lee
,
J.
Moon
,
Y.
Jeong
,
J.
Lee
,
X.
Li
,
H.
Wu
, and
W. D.
Lu
, “
Quantitative, dynamic TaOx memristor/resistive random access memory model
,”
ACS Appl. Electron. Mater.
2
(
3
),
701
709
(
2020
).
29.
K.
Seo
,
I.
Kim
,
S.
Jung
,
M.
Jo
,
S.
Park
,
J.
Park
,
J.
Shin
,
K. P.
Biju
,
J.
Kong
, and
K.
Lee
, “
Analog memory and spike-timing-dependent plasticity characteristics of a nanoscale titanium oxide bilayer resistive switching device
,”
Nanotechnology
22
(
25
),
254023
(
2011
).
30.
Q.
Xia
,
W.
Robinett
,
M. W.
Cumbie
,
N.
Banerjee
,
T. J.
Cardinali
,
J. J.
Yang
,
W.
Wu
,
X.
Li
,
W. M.
Tong
, and
D. B.
Strukov
, “
Memristor—CMOS hybrid integrated circuits for reconfigurable logic
,”
Nano Lett.
9
(
10
),
3640
3645
(
2009
).
31.
T.
Chang
,
S.-H.
Jo
, and
W.
Lu
,
ACS Nano
5
,
7669
7676
(
2011
);
[PubMed]
T.
Ohno
,
T.
Hasegawa
,
T.
Tsuruoka
,
K.
Terabe
,
J. K.
Gimzewski
, and
M.
Aono
,
Nat. Mater.
10
,
591
(
2011
).
[PubMed]
32.
R.
Yang
,
K.
Terabe
,
Y.
Yao
,
T.
Tsuruoka
,
T.
Hasegawa
,
J. K.
Gimzewski
, and
M.
Aono
, “
Synaptic plasticity and memory functions achieved in a WO3−x-based nanoionics device by using the principle of atomic switch operation
,”
Nanotechnology
24
(
38
),
384003
(
2013
).
33.
T. D.
Dongale
,
S. V.
Mohite
,
A. A.
Bagade
,
R. K.
Kamat
, and
K. Y.
Rajpure
, “
Bio-mimicking the synaptic weights, analog memory, and forgetting effect using spray deposited WO3 memristor device
,”
Microelectron. Eng.
183–184
,
12
18
(
2017
).
34.
H.
Nili
,
T.
Ahmed
,
S.
Walia
,
R.
Ramanathan
,
A. E.
Kandjani
,
S.
Rubanov
,
J.
Kim
,
O.
Kavehei
,
V.
Bansal
, and
M.
Bhaskaran
, “
Microstructure and dynamics of vacancy-induced nanofilamentary switching network in donor doped SrTiO3−x memristors
,”
Nanotechnology
27
(
50
),
505210
(
2016
).
35.
C.
Funck
,
C.
Bäumer
,
S.
Wiefels
,
T.
Hennen
,
R.
Waser
,
S.
Hoffmann-Eifert
,
R.
Dittmann
, and
S.
Menzel
, “
Comprehensive model for the electronic transport in Pt/SrTiO3 analog memristive devices
,”
Phys. Rev. B
102
(
3
),
035307
(
2020
).
36.
J. T.
Jang
,
D.
Kim
,
W. S.
Choi
,
S.-J.
Choi
,
D. M.
Kim
,
Y.
Kim
, and
D. H.
Kim
, “
One transistor–two memristor based on amorphous indium–gallium–zinc-oxide for neuromorphic synaptic devices
,”
ACS Appl. Electron. Mater.
2
(
9
),
2837
2844
(
2020
).
37.
Y.
Wang
,
Y.
Gong
,
L.
Yang
,
Z.
Xiong
,
Z.
Lv
,
X.
Xing
,
Y.
Zhou
,
B.
Zhang
,
C.
Su
, and
Q.
Liao
, “
MXene-ZnO memristor for multimodal In-sensor computing
,”
Adv. Funct. Mater.
31
(
21
),
2100144
(
2021
).
38.
X.
Lian
,
X.
Shen
,
M.
Zhang
,
J.
Xu
,
F.
Gao
,
X.
Wan
,
E.
Hu
,
Y.
Guo
,
J.
Zhao
, and
Y.
Tong
, “
Resistance switching characteristics and mechanisms of MXene/SiO2 structure-based memristor
,”
Appl. Phys. Lett.
115
(
6
),
063501
(
2019
).
39.
C.
He
,
J.
Li
,
X.
Wu
,
P.
Chen
,
J.
Zhao
,
K.
Yin
,
M.
Cheng
,
W.
Yang
,
G.
Xie
, and
D.
Wang
, “
Tunable electroluminescence in planar graphene/SiO2 memristors
,”
Adv. Mater.
25
(
39
),
5593
5598
(
2013
).
40.
S.
Yu
,
B.
Gao
,
Z.
Fang
,
H.
Yu
,
J.
Kang
, and
H.-S. P.
Wong
, “
A low energy oxide-based electronic synaptic device for neuromorphic visual systems with tolerance to device variation
,”
Adv. Mater.
25
(
12
),
1774
1779
(
2013
).
41.
H.-S. P.
Wong
,
H.-Y.
Lee
,
S.
Yu
,
Y.-S.
Chen
,
Y.
Wu
,
P.-S.
Chen
,
B.
Lee
,
F. T.
Chen
, and
M.-J.
Tsai
, “
Metal-oxide RRAM
,”
Proc. IEEE
100
(
6
),
1951
1970
(
2012
).
42.
P.
Basnet
,
D. G.
Pahinkar
,
M. P.
West
,
C. J.
Perini
,
S.
Graham
, and
E. M.
Vogel
, “
Substrate dependent resistive switching in amorphous-HfOx memristors: An experimental and computational investigation
,”
J. Mater. Chem. C
8
(
15
),
5092
5101
(
2020
).
43.
E.
Başar
and
B.
Güntekin
, “
A review of brain oscillations in cognitive disorders and the role of neurotransmitters
,”
Brain Res.
1235
,
172
193
(
2008
).
44.
K.
Kuriyama
and
S.
Ohkuma
, “
Role of nitric oxide in central synaptic transmission: Effects on neurotransmitter release
,”
Jpn. J. Pharmacol.
69
(
1
),
1
8
(
1995
).
45.
A. E.
Abdel Ghafar
,
S.
E. Elkowrany
,
S.
A. Salem
,
A.
A. Menaisy
,
W.
A. Fadel
, and
W.
M. Awara
, “
Effect of some parasitic infection on neurotransmitters in the brain of experimentally infected mice before and after treatment
,”
J. Egypt. Soc. Parasitol.
26
(
2
),
497
508
(
1996
).
46.
L. F.
Abbott
and
W. G.
Regehr
, “
Synaptic computation
,”
Nature
431
(
7010
),
796
803
(
2004
).
47.
H.
Ryu
and
S.
Kim
, “
Self-rectifying resistive switching and short-term memory characteristics in Pt/HfO2/TaOx/TiN artificial synaptic device
,”
Nanomaterials
10
(
11
),
2159
(
2020
).
48.
Q.
Wang
,
G.
Niu
,
S.
Roy
,
Y.
Wang
,
Y.
Zhang
,
H.
Wu
,
S.
Zhai
,
W.
Bai
,
P.
Shi
, and
S.
Song
, “
Interface-engineered reliable HfO2-based RRAM for synaptic simulation
,”
J. Mater. Chem. C
7
(
40
),
12682
12687
(
2019
).
49.
S.
Kim
,
J.
Chen
,
Y.-C.
Chen
,
M.-H.
Kim
,
H.
Kim
,
M.-W.
Kwon
,
S.
Hwang
,
M.
Ismail
,
Y.
Li
, and
X.-S.
Miao
, “
Neuronal dynamics in HfOx/AlOy-based homeothermic synaptic memristors with low-power and homogeneous resistive switching
,”
Nanoscale
11
(
1
),
237
245
(
2019
).
50.
Y.
Matveyev
,
K.
Egorov
,
A.
Markeev
, and
A.
Zenkevich
, “
Resistive switching and synaptic properties of fully atomic layer deposition grown TiN/HfO2/TiN devices
,”
J. Appl. Phys.
117
(
4
),
044901
(
2015
).
51.
K.
Moon
,
S.
Lim
,
J.
Park
,
C.
Sung
,
S.
Oh
,
J.
Woo
,
J.
Lee
, and
H.
Hwang
, “
RRAM-based synapse devices for neuromorphic systems
,”
Faraday Discuss.
213
,
421
451
(
2019
).
52.
C.
Baeumer
,
R.
Valenta
,
C.
Schmitz
,
A.
Locatelli
,
T. O.
Mentes
,
S. P.
Rogers
,
A.
Sala
,
N.
Raab
,
S.
Nemsak
, and
M.
Shim
, “
Subfilamentary networks cause cycle-to-cycle variability in memristive devices
,”
ACS Nano
11
(
7
),
6921
6929
(
2017
).
53.
D.
Kuzum
,
R. G. D.
Jeyasingh
,
B.
Lee
, and
H.-S. P.
Wong
, “
Nanoelectronic programmable synapses based on phase change materials for brain-inspired computing
,”
Nano Lett.
12
(
5
),
2179
2186
(
2012
).
54.
G.
Indiveri
,
B.
Linares-Barranco
,
R.
Legenstein
,
G.
Deligeorgis
, and
T.
Prodromakis
, “
Integration of nanoscale memristor synapses in neuromorphic computing architectures
,”
Nanotechnology
24
(
38
),
384010
(
2013
).
55.
Y.
Li
and
K.-W.
Ang
, “
Hardware implementation of neuromorphic computing using large-scale memristor crossbar arrays
,”
Adv. Intell. Syst.
3
(
1
),
2000137
(
2021
).
56.
Y.-E.
Syu
,
T.-C.
Chang
,
J.-H.
Lou
,
T.-M.
Tsai
,
K.-C.
Chang
,
M.-J.
Tsai
,
Y.-L.
Wang
,
M.
Liu
, and
S. M.
Sze
, “
Atomic-level quantized reaction of HfOx memristor
,”
Appl. Phys. Lett.
102
(
17
),
172903
(
2013
).
57.
X.
Ding
,
D.
Zhu
,
Y.
Feng
,
L.
Cai
,
P.
Huang
,
L.
Liu
, and
J.
Kang
, “
Low-power, multilevel and analog characteristics in the multi-layer-oxide based RRAM devices compatible with CMOS technology
,” in
2018 14th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT)
(
IEEE
,
2018
), pp.
1
3
.
58.
S.
Roy
,
G.
Niu
,
Q.
Wang
,
Y.
Wang
,
Y.
Zhang
,
H.
Wu
,
S.
Zhai
,
P.
Shi
,
S.
Song
, and
Z.
Song
, “
Toward a reliable synaptic simulation using Al-doped HfO2 RRAM
,”
ACS Appl. Mater. Interfaces
12
(
9
),
10648
10656
(
2020
).
59.
N.-N.
Ge
,
C.-H.
Gong
,
X.-C.
Yuan
,
H.-Z.
Zeng
, and
X.-H.
Wei
, “
Effect of Mn doping on electroforming and threshold voltages of bipolar resistive switching in Al/Mn:NiO/ITO
,”
RSC Adv.
8
(
52
),
29499
29504
(
2018
).
60.
Z.
Fang
,
H. Y.
Yu
,
X.
Li
,
N.
Singh
,
G. Q.
Lo
, and
D. L.
Kwong
, “
HfOx/TiOx/HfOx/TiOx multilayer-based forming-free RRAM devices with excellent uniformity
,”
IEEE Electron Device Lett.
32
(
4
),
566
568
(
2011
).
61.
T.
Tan
,
Y.
Du
,
A.
Cao
,
Y.
Sun
,
G.
Zha
,
H.
Lei
, and
X.
Zheng
, “
The resistive switching characteristics of Ni-doped HfOx film and its application as a synapse
,”
J. Alloys Compd.
766
,
918
924
(
2018
).
62.
S.
Mandal
,
A.
El-Amin
,
K.
Alexander
,
B.
Rajendran
, and
R.
Jha
, “
Novel synaptic memory device for neuromorphic computing
,”
Sci. Rep.
4
(
1
),
1
10
(
2014
).
63.
J.
Ahn
,
J. Y.
Lee
,
J.
Kim
,
J.
Yoo
, and
C.
Ryu
, “
Comparison study from sputtering, sol-gel, and ALD processes developing embedded thin film capacitors
,” in
2006 8th Electronics Packaging Technology Conference
(
IEEE
,
2006
), pp.
10
14
.
64.
W.
Wu
,
H.
Wu
,
B.
Gao
,
P.
Yao
,
X.
Zhang
,
X.
Peng
,
S.
Yu
, and
H.
Qian
, “
A methodology to improve linearity of analog RRAM for neuromorphic computing
,” in
2018 IEEE Symposium on VLSI Technology
(
IEEE
,
2018
), pp.
103
104
.
65.
S.
Chandrasekaran
,
F. M.
Simanjuntak
,
R.
Saminathan
,
D.
Panda
, and
T.-Y.
Tseng
, “
Improving linearity by introducing Al in HfO2 as a memristor synapse device
,”
Nanotechnology
30
(
44
),
445205
(
2019
).
66.
B.
Chakrabarti
,
Investigation of Metal Oxide Dielectrics for Non-Volatile Floating Gate and Resistance Switching Memory Applications
(
The University of Texas at Dallas
,
2014
).
67.
B.
Chakrabarti
and
E. M.
Vogel
, “
Effect of Ti doping and annealing on multi-level forming-free resistive random access memories with atomic layer deposited HfTiOx nanolaminate
,”
Microelectron. Eng.
109
,
193
196
(
2013
).
68.
F. F.
Athena
,
M. P.
West
,
J.
Hah
,
R.
Hanus
,
S.
Graham
, and
E. M.
Vogel
, “
Towards a better understanding of the forming and resistive switching behavior of Ti-doped HfOx RRAM
,”
J. Mater. Chem. C
10
,
5896
5904
(
2022
).
69.
G.
Henkelman
,
B. P.
Uberuaga
, and
H.
Jónsson
, “
A climbing image nudged elastic band method for finding saddle points and minimum energy paths
,”
J. Chem. Phys.
113
(
22
),
9901
9904
(
2000
).
70.
E. A.
Cartier
,
W.
Kim
,
N.
Gong
,
T.
Gokmen
,
M. M.
Frank
,
D. M.
Bishop
,
Y.
Kim
,
S.
Kim
,
T.
Ando
, and
E. Y.
Wu
, “
Reliability challenges with materials for analog computing
,” in
2019 IEEE International Reliability Physics Symposium (IRPS)
(
IEEE
,
2019
), pp.
1
10
.
71.
J.
Lee
,
J.-H.
Ryu
,
B.
Kim
,
F.
Hussain
,
C.
Mahata
,
E.
Sim
,
M.
Ismail
,
Y.
Abbas
,
H.
Abbas
, and
D. K.
Lee
, “
Synaptic characteristics of amorphous boron nitride-based memristors on a highly doped silicon substrate for neuromorphic engineering
,”
ACS Appl. Mater. Interfaces
12
(
30
),
33908
33916
(
2020
).
72.
Z.
Li
,
B.
Tian
,
K.-H.
Xue
,
B.
Wang
,
M.
Xu
,
H.
Lu
,
H.
Sun
, and
X.
Miao
, “
Coexistence of digital and analog resistive switching with low operation voltage in oxygen-gradient HfOx memristors
,”
IEEE Electron Device Lett.
40
(
7
),
1068
1071
(
2019
).
73.
C.
Bloch
, “
Power
,”
Tikkun
23
(
3
),
49
(
2008
).
74.
S.
Agarwal
,
S. J.
Plimpton
,
D. R.
Hughart
,
A. H.
Hsia
,
I.
Richter
,
J. A.
Cox
,
C. D.
James
, and
M. J.
Marinella
, “
Resistive memory device requirements for a neural algorithm accelerator
,” in
2016 International Joint Conference on Neural Networks (IJCNN)
(
IEEE
,
2016
), pp.
929
938
.
75.
J.
Chen
,
W.-Q.
Pan
,
Y.
Li
,
R.
Kuang
,
Y.-H.
He
,
C.-Y.
Lin
,
N.
Duan
,
G.-R.
Feng
,
H.-X.
Zheng
, and
T.-C.
Chang
, “
High-precision symmetric weight update of memristor by gate voltage ramping method for convolutional neural network accelerator
,”
IEEE Electron Device Lett.
41
(
3
),
353
356
(
2020
).
76.
S. R.
Bradley
,
A. L.
Shluger
, and
G.
Bersuker
, “
Electron-injection-assisted generation of oxygen vacancies in monoclinic HfO2
,”
Phys. Rev. Appl.
4
(
6
),
064008
(
2015
).
77.
G.
Bersuker
,
D.
Gilmer
, and
D.
Veksler
, “
Metal-oxide resistive random access memory (RRAM) technology: Material and operation details and ramifications
,” in
Advances in Non-Volatile Memory and Storage Technology
(
Elsevier
,
2019
), pp.
35
102
.
78.
H. H.
Wu
,
P.
Wisesa
, and
D. R.
Trinkle
, “
Oxygen diffusion in hcp metals from first principles
,”
Phys. Rev. B
94
(
1
),
014307
(
2016
).

Supplementary Material

You do not currently have access to this content.