Color-center defects in silicon carbide promise opto-electronic quantum applications in several fields, such as computing, sensing, and communication. In order to scale down and combine these functionalities with the existing silicon device platforms, it is crucial to consider SiC integrated optics. In recent years, many examples of SiC photonic platforms have been shown, like photonic crystal cavities, film-on-insulator waveguides, and micro-ring resonators. However, all these examples rely on separating thin films of SiC from substrate wafers. This introduces significant surface roughness, strain, and defects in the material, which greatly affects the homogeneity of the optical properties of color centers. Here, we present and test a method for fabricating monolithic single-crystal integrated-photonic devices in SiC: tuning optical properties via charge carrier concentration. We fabricated monolithic SiC n-i-n and p-i-n junctions where the intrinsic layer acts as waveguide core, and demonstrate the waveguide functionality for these samples. The propagation losses are below 14 dB/cm. These waveguide types allow for addressing color centers over a broad wavelength range with low strain-induced inhomogeneity of the optical-transition frequencies. Furthermore, we expect that our findings open the road to fabricating waveguides and devices based on p-i-n junctions, which will allow for integrated electrostatic and radio frequency control together with high-intensity optical control of defects in silicon carbide.

1.
W. F.
Koehl
,
B. B.
Buckley
,
F. J.
Heremans
,
G.
Calusine
, and
D. D.
Awschalom
, “
Room temperature coherent control of defect spin qubits in silicon carbide
,”
Nature
479
,
84
87
(
2011
).
2.
O. V.
Zwier
,
D.
O’Shea
,
A. R.
Onur
, and
C. H.
van der Wal
, “
All-optical coherent population trapping with defect spin ensembles in silicon carbide
,”
Sci. Rep.
5
,
10931
(
2015
).
3.
M.
Widmann
,
M.
Niethammer
,
D. Y.
Fedyanin
,
I. A.
Khramtsov
,
T.
Rendler
,
I. D.
Booker
,
J.
Ul Hassan
,
N.
Morioka
,
Y.-C.
Chen
,
I. G.
Ivanov
et al., “
Electrical charge state manipulation of single silicon vacancies in a silicon carbide quantum optoelectronic device
,”
Nano Lett.
19
,
7173
7180
(
2019
).
4.
S.
Majety
,
P.
Saha
,
V. A.
Norman
, and
M.
Radulaski
, “Quantum information processing with integrated silicon carbide photonics,” arXiv:2111.00136[quant-ph] (2021).
5.
S. E.
Saddow
,
C. L.
Frewin
,
C.
Coletti
,
N.
Schettini
,
E.
Weeber
,
A.
Oliveros
, and
M.
Jarosezski
, “
Single-crystal silicon carbide: A biocompatible and hemocompatible semiconductor for advanced biomedical applications
,”
Mater. Sci. Forum
679
,
824
830
(
2011
).
6.
D.
Simin
,
F.
Fuchs
,
H.
Kraus
,
A.
Sperlich
,
P.
Baranov
,
G.
Astakhov
, and
V.
Dyakonov
, “
High-precision angle-resolved magnetometry with uniaxial quantum centers in silicon carbide
,”
Phys. Rev. Appl.
4
,
014009
(
2015
).
7.
T.
Bosma
,
G. J.
Lof
,
C. M.
Gilardoni
,
O. V.
Zwier
,
F.
Hendriks
,
B.
Magnusson
,
A.
Ellison
,
A.
Gällström
,
I. G.
Ivanov
,
N.
Son
et al., “
Identification and tunable optical coherent control of transition-metal spins in silicon carbide
,”
npj Quantum Inf.
4
,
1
7
(
2018
).
8.
L.
Spindlberger
,
A.
Csóré
,
G.
Thiering
,
S.
Putz
,
R.
Karhu
,
J. U.
Hassan
,
N. T.
Son
,
T.
Fromherz
,
A.
Gali
, and
M.
Trupke
, “
Optical properties of vanadium in 4-H silicon carbide for quantum technology
,”
Phys. Rev. Appl.
12
,
014015
(
2019
).
9.
G.
Wolfowicz
,
C. P.
Anderson
,
B.
Diler
,
O. G.
Poluektov
,
F. J.
Heremans
, and
D. D.
Awschalom
, “
Vanadium spin qubits as telecom quantum emitters in silicon carbide
,”
Sci. Adv.
6
,
2
10
(
2020
).
10.
G.
Pandraud
,
H.
Pham
,
P.
French
, and
P.
Sarro
, “
PECVD SiC optical waveguide loss and mode characteristics
,”
Opt. Laser Technol.
39
,
532
536
(
2007
).
11.
Y.
Zheng
,
M.
Pu
,
A.
Yi
,
B.
Chang
,
T.
You
,
K.
Huang
,
A. N.
Kamel
,
M. R.
Henriksen
,
A. A.
Jørgensen
,
X.
Ou
et al., “
High-quality factor, high-confinement microring resonators in 4H-silicon carbide-on-insulator
,”
Opt. Express
27
,
13053
13060
(
2019
).
12.
B.
Zhang
,
S.
He
,
Q.
Yang
,
H.
Liu
,
L.
Wang
, and
F.
Chen
, “
Femtosecond laser modification of 6H-SiC crystals for waveguide devices
,”
Appl. Phys. Lett.
116
,
111903
(
2020
).
13.
G.
Calusine
,
A.
Politi
, and
D. D.
Awschalom
, “
Silicon carbide photonic crystal cavities with integrated color centers
,”
Appl. Phys. Lett.
105
,
011123
(
2014
).
14.
D. M.
Lukin
,
C.
Dory
,
M. A.
Guidry
,
K. Y.
Yang
,
S. D.
Mishra
,
R.
Trivedi
,
M.
Radulaski
,
S.
Sun
,
D.
Vercruysse
,
G. H.
Ahn
et al., “
4H-silicon-carbide-on-insulator for integrated quantum and nonlinear photonics
,”
Nat. Photonics
14
,
330
334
(
2020
).
15.
F.
Martini
and
A.
Politi
, “
Linear integrated optics in 3C silicon carbide
,”
Opt. Express
25
,
10735
10742
(
2017
).
16.
A. L.
Falk
,
P. V.
Klimov
,
B. B.
Buckley
,
V.
Ivády
,
I. A.
Abrikosov
,
G.
Calusine
,
W. F.
Koehl
,
Á.
Gali
, and
D. D.
Awschalom
, “
Electrically and mechanically tunable electron spins in silicon carbide color centers
,”
Phys. Rev. Lett.
112
,
187601
(
2014
).
17.
M.
Widmann
,
M.
Niethammer
,
T.
Makino
,
T.
Rendler
,
S.
Lasse
,
T.
Ohshima
,
J.
Ul Hassan
,
N.
Tien Son
,
S.-Y.
Lee
, and
J.
Wrachtrup
, “
Bright single photon sources in lateral silicon carbide light emitting diodes
,”
Appl. Phys. Lett.
112
,
231103
(
2018
).
18.
C. P.
Anderson
,
A.
Bourassa
,
K. C.
Miao
,
G.
Wolfowicz
,
P. J.
Mintun
,
A. L.
Crook
,
H.
Abe
,
J. U.
Hassan
,
N. T.
Son
,
T.
Ohshima
et al., “
Electrical and optical control of single spins integrated in scalable semiconductor devices
,”
Science
366
,
1225
1230
(
2019
).
19.
R.
Hunsperger
,
Integrated Optics: Theory and Technology
, 6th ed. (
Springer-Verlag
,
New York
,
2009
).
20.
C. F.
de las Casas
,
D. J.
Christle
,
J.
Ul Hassan
,
T.
Ohshima
,
N. T.
Son
, and
D. D.
Awschalom
, “
Stark tuning and electrical charge state control of single divacancies in silicon carbide
,”
Appl. Phys. Lett.
111
,
262403
(
2017
).
21.
W.
Bond
,
B.
Cohen
,
R.
Leite
, and
A.
Yariv
, “
Observation of the dielectric-waveguide mode of light propagation in p-n junctions
,”
Appl. Phys. Lett.
2
,
57
59
(
1963
).
22.
B. R.
Bennett
,
R. A.
Soref
, and
J. A.
Del Alamo
, “
Carrier-induced change in refractive index of InP, GaAs and InGaAsP
,”
IEEE J. Quantum Electron.
26
,
113
122
(
1990
).
23.
M.
Fox
,
Optical Properties of Solids
(
Oxford University Press
,
Oxford
,
2010
).
24.
S.
Yoshida
,
Y.
Hijikata
, and
H.
Yaguchi
, “Nondestructive and contactless characterization method for spatial mapping of the thickness and electrical properties in homo-epitaxially grown SiC epilayers using infrared reflectance spectroscopy,” in Physics and Technology of Silicon Carbide Devices (InTech, 2012), Vol. 11 .
25.
M.
Sedighi
,
V.
Svetovoy
,
W.
Broer
, and
G.
Palasantzas
, “
Casimir forces from conductive silicon carbide surfaces
,”
Phys. Rev. B
89
,
195440
(
2014
).
26.
M.
Hammer
, see https://www.computational-photonics.eu/oms.html for “1-D Mode Solver for Dielectric Multilayer Slab Waveguides” (2020) (accessed 4 September 2020).
27.
Thorlabs, see https://www.thorlabs.com/images/TabImages/355230_Focal_Shift_780.gif for “35520 Apshere Focal Shift” (2020) (accessed 1 April 2020).
28.
L.
Chang
,
X.
Sun
,
H.
Shang
,
P.
Liu
,
T. J.
Hall
, and
D.
Sun
, “Analysis of the fiber-waveguide coupling efficiency and the resulting polarization dependent loss,” in 2017 International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD) (IEEE, 2017), pp. 155–156.
29.
N. T.
Son
,
P. N.
Hai
,
W. M.
Chen
,
C.
Hallin
,
B.
Monemar
, and
E.
Janzén
, “
Hole effective masses in 4H SiC
,”
Phys. Rev. B
61
,
R10544
R10546
(
2000
).
30.
S.
Wang
,
M.
Zhan
,
G.
Wang
,
H.
Xuan
,
W.
Zhang
,
C.
Liu
,
C.
Xu
,
Y.
Liu
,
Z.
Wei
, and
X.
Chen
, “
4H-SiC: A new nonlinear material for midinfrared lasers
,”
Laser Photonics Rev.
7
,
831
838
(
2013
).
31.
M. C. T.
Bahaa
and
E. A.
Saleh
,
Fundamentals of Photonics
, 2nd ed. (
Wiley
,
2007
).
32.
That is, for all frequencies below the bandgap and far enough above the plasma frequency.

Supplementary Material

You do not currently have access to this content.