We demonstrate that commercially available window tinting films could be used multifunctionally, i.e., for electromagnetic shielding and absorption at frequencies below 1 THz along with visible light and ultraviolet protection. The fine control of the film optical properties by their structural composition can also be used to extend their performance to the lower frequency ranges, i.e., terahertz and microwave. The electromagnetic properties of two types of thin protective films loaded with either carbon or iron oxide micro- and nano-inclusions were studied in microwave (12–18 GHz) and terahertz (0.2–1.0 THz) frequency ranges vs their inner structure. The reflection and transmission coefficients of studied tint films were investigated using waveguide and free space measurements and compared with theoretical modeling results. The effective sheet resistance was estimated from the experimental data.

1.
F.
Qin
and
C.
Brosseau
, “
A review and analysis of microwave absorption in polymer composites filled with carbonaceous particles
,”
J. Appl. Phys.
111
,
061301
(
2012
).
2.
A.
Celzard
,
J. F.
Mareche
, and
G.
Furdin
, “
Modelling of exfoliated graphite
,”
Prog. Mater. Sci.
50
,
93
179
(
2005
).
3.
P.
Kuzhir
,
A.
Paddubskaya
,
D.
Bychanok
,
A.
Nemilentsau
,
M.
Shuba
,
A.
Plusch
,
S.
Maksimenko
,
S.
Bellucci
,
L.
Coderoni
, and
F.
Micciulla
, “
Microwave probing of nanocarbon based epoxy resin composite films: Toward electromagnetic shielding
,”
Thin Solid Films
519
,
4114
4118
(
2011
).
4.
D.
Bychanok
,
P.
Kuzhir
,
S.
Maksimenko
,
S.
Bellucci
, and
C.
Brosseau
, “
Characterizing epoxy composites filled with carbonaceous nanoparticles from dc to microwave
,”
J. Appl. Phys.
113
,
124103
(
2013
).
5.
M.
Green
and
X.
Chen
, “
Recent progress of nanomaterials for microwave absorption
,”
J. Materiomics
5
,
503
541
(
2019
).
6.
K.
Batrakov
,
P.
Kuzhir
,
S.
Maksimenko
,
A.
Paddubskaya
,
S.
Voronovich
,
T.
Kaplas
, and
Y.
Svirko
, “
Enhanced microwave shielding effectiveness of ultrathin pyrolytic carbon films
,”
Appl. Phys. Lett.
103
,
073117
(
2013
).
7.
F.
Nelson
,
A.
Sandin
,
D. B.
Dougherty
,
D. E.
Aspnes
,
J. E.
Rowe
, and
A. C.
Diebold
, “
Optical and structural characterization of epitaxial graphene on vicinal 6H-SiC (0001)-Si by spectroscopic ellipsometry, Auger spectroscopy, and STM
,”
J. Vac. Sci. Technol. B
30
,
04E106
(
2012
).
8.
K.
Batrakov
,
P.
Kuzhir
,
S.
Maksimenko
,
N.
Volynets
,
S.
Voronovich
,
A.
Paddubskaya
,
G.
Valusis
,
T.
Kaplas
,
Y.
Svirko
, and
P.
Lambin
, “
Enhanced microwave-to-terahertz absorption in graphene
,”
Appl. Phys. Lett.
108
,
123101
(
2016
).
9.
A.
Paddubskaya
,
M.
Demidenko
,
K.
Batrakov
,
G.
Valušis
,
T.
Kaplas
,
Y.
Svirko
, and
P.
Kuzhir
, “
Tunable perfect THz absorber based on a stretchable ultrathin carbon-polymer bilayer
,”
Materials
12
,
143
(
2019
),
10.
N.
Liubetski
,
H.
Volunets
,
Y.
Padrez
, and
D.
Bychanok
,
Creation of Radar-Absorbing Structures Based on Carbon Films
(
IEEE
,
2020
), pp.
535
537
.
11.
J.
Baker-Jarvis
,
E. J.
Vanzura
, and
W. A.
Kissick
, “
Improved technique for determining complex permittivity with the transmission/reflection method
,”
IEEE Trans. Microw. Theory Tech.
38
,
1096
1103
(
1990
).
12.
Standard test method for measuring relative complex permittivity and relative magnetic permeability of solid materials at microwave frequencies, ASTM D556808 (2009).
13.
H. A.
Macleod
and
H. A.
Macleod
,
Thin-Film Optical Filters
(
CRC Press
,
2010
).
14.
B.-K.
Chung
, “
Dielectric constant measurement for thin material at microwave frequencies
,”
Prog. Electromagn. Res.
75
,
239
252
(
2007
).
15.
O. V.
Sedelnikova
,
M. A.
Kanygin
,
E. Y.
Korovin
,
L. G.
Bulusheva
,
V. I.
Suslyaev
, and
A. V.
Okotrub
, “
Effect of fabrication method on the structure and electromagnetic response of carbon nanotube/polystyrene composites in low-frequency and Ka bands
,”
Compos. Sci. Technol.
102
,
59
64
(
2014
).
16.
M. S.
Sarto
,
A. G.
D’Aloia
,
A.
Tamburrano
, and
G.
De Bellis
, “
Synthesis, modeling, and experimental characterization of graphite nanoplatelet-based composites for EMC applications
,”
IEEE Trans. Electromagn. Compat.
54
,
17
27
(
2012
).
17.
D.
Bychanok
,
P.
Angelova
,
A.
Paddubskaya
,
D.
Meisak
,
L.
Shashkova
,
M.
Demidenko
,
A.
Plyushch
,
E.
Ivanov
,
R.
Krastev
, and
R.
Kotsilkova
, “
Terahertz absorption in graphite nanoplatelets/polylactic acid composites
,”
J. Phys. D: Appl. Phys.
51
,
145307
(
2018
).
18.
I. M.
De Rosa
,
A.
Dinescu
,
F.
Sarasini
,
M. S.
Sarto
, and
A.
Tamburrano
, “
Effect of short carbon fibers and MWCNTs on microwave absorbing properties of polyester composites containing nickel-coated carbon fibers
,”
Compos. Sci. Technol.
70
,
102
109
(
2010
).
19.
F.
Marra
,
A. G.
D’Aloia
,
A.
Tamburrano
,
I. M.
Ochando
,
G.
De Bellis
,
G.
Ellis
, and
M. S.
Sarto
, “
Electromagnetic and dynamic mechanical properties of epoxy and vinylester-based composites filled with graphene nanoplatelets
,”
Polymers
8
,
272
(
2016
).
20.
S.-E.
Lee
,
O.
Choi
, and
H. T.
Hahn
, “
Microwave properties of graphite nanoplatelet/epoxy composites
,”
J. Appl. Phys.
104
,
033705
(
2008
).
21.
H.
Sun
,
R.
Che
,
X.
You
,
Y.
Jiang
,
Z.
Yang
,
J.
Deng
,
L.
Qiu
, and
H.
Peng
, “
Cross-stacking aligned carbon-nanotube films to tune microwave absorption frequencies and increase absorption intensities
,”
Adv. Mater.
26
,
8120
8125
(
2014
).
22.
A. V.
Eletskii
, “
Transport properties of carbon nanotubes
,”
Phys. Usp.
52
,
209
(
2009
).
23.
J.-B.
Kim
,
S.-K.
Lee
, and
C.-G.
Kim
, “
Comparison study on the effect of carbon nano materials for single-layer microwave absorbers in x-band
,”
Compos. Sci. Technol.
68
,
2909
2916
(
2008
).

Supplementary Material

You do not currently have access to this content.